MTH5117 Mathematical writing: Coursework 3 Franco Vivaldi

DEADLINE: Sunday of week 5, at 23.55.

ASSESSED PROBLEMS [with allocated marks]. Problem 1: 6, 7 [20]. Problem 2: 3, 5 [20]. Problem 3: 5, 6, 7, 8 [40]. Problem 4: 1, 2 [20].

Problem 1. Write each existence statement with symbols, using the quantifier \exists in each case.

- 1. The integer n is odd.
- 2. The set X has more than one element.
- 3. The sets X and Y have non-empty intersection.
- 4. The unit circle has a rational point.¹
- 5. The equation f(x) = 0 has a positive integer solution.
- **6**. $z \in f(X)$.
- 7. The integers m and n are not coprime.
- 8. The integer n is not divisible by 3.

 $^1 \mathrm{See}$ web-book.

Problem 2. Write each existence statement with symbols, using the quantifier \forall (and, if appropriate, \exists), in each case.

- 1. The equation f(x) = 0 has no real solution.
- 2. The sets A and B are disjoint.
- **3**. The open unit interval has no greatest element.
- 4. The set X has a greatest element.
- **5**. The function $f: X \to Y$ is constant.
- 6. Eventually, all terms of the integer sequence (a_1, a_2, \ldots) become negative.

Problem 3. Write each symbolic sentence in two ways:

- i) without any symbol, apart from f.
- *ii*) with symbols only, using quantifiers. (You may assume that $f : \mathbb{R} \to \mathbb{R}$.)

1.	$f(\mathbb{R}) = \mathbb{R}$	2.	$\#f(\mathbb{R}) = 1$
3.	$0 \in f(\mathbb{Z})$	4.	$f(\mathbb{R}) \subset \mathbb{Q}$
5.	$f(\mathbb{Z}) = \{0\}$	6.	$f^{-1}(\mathbb{Z}) = \emptyset$
7.	$f(\mathbb{R}) \supset \mathbb{Z}$	8.	$f(\mathbb{Q}) \cap \mathbb{Q} = \emptyset.$

Problem 4. Explain, clearly and concisely. $[\not e, 30]$

- **1**. What is the difference between an equation and an identity?
- **2**. What is the difference between an ordered pair and a set with two elements?