MTH5117 Mathematical writing: Coursework 3

Franco Vivaldi

DEADLINE: Sunday of week 5, at 23.55.

ASSESSED PROBLEMS [with allocated marks].
Problem 1: 6, 7 [20]. Problem 2: 3, 5 [20].
Problem 3: 5, 6, 7, 8 [40]. Problem 4: 1, 2 [20].

Problem 1. Write each existence statement with symbols, using the quantifier \exists in each case.

1. The integer n is odd.
2. The set X has more than one element.
3. The sets X and Y have non-empty intersection.
4. The unit circle has a rational point. ${ }^{1}$
5. The equation $f(x)=0$ has a positive integer solution.
6. $z \in f(X)$.
7. The integers m and n are not coprime.
8. The integer n is not divisible by 3 .
[^0]Problem 2. Write each existence statement with symbols, using the quantifier \forall (and, if appropriate, \exists), in each case.

1. The equation $f(x)=0$ has no real solution.
2. The sets A and B are disjoint.
3. The open unit interval has no greatest element.
4. The set X has a greatest element.
5. The function $f: X \rightarrow Y$ is constant.
6. Eventually, all terms of the integer sequence $\left(a_{1}, a_{2}, \ldots\right)$ become negative.

Problem 3. Write each symbolic sentence in two ways:
i) without any symbol, apart from f.
ii) with symbols only, using quantifiers. (You may assume that $f: \mathbb{R} \rightarrow$ \mathbb{R}.)

1. $f(\mathbb{R})=\mathbb{R}$
2. $\# f(\mathbb{R})=1$
3. $0 \in f(\mathbb{Z})$
4. $f(\mathbb{R}) \subset \mathbb{Q}$
5. $f(\mathbb{Z})=\{0\}$
6. $\quad f^{-1}(\mathbb{Z})=\emptyset$
7. $f(\mathbb{R}) \supset \mathbb{Z}$
8. $\quad f(\mathbb{Q}) \cap \mathbb{Q}=\emptyset$.

Problem 4. Explain, clearly and concisely. [$\notin, 30]$

1. What is the difference between an equation and an identity?
2. What is the difference between an ordered pair and a set with two elements?

[^0]: ${ }^{1}$ See web-book.

