MTH5117 Mathematical writing: Coursework 2

Franco Vivaldi

DEADLINE: Sunday of week 4, at 23.55.

ASSESSED PROBLEMS [with allocated marks]. Problem 1: 5, 7 [20]. Problem 2: [20]. Problem 3: 4, 5 [20]. Problem 4: 4, 5 [20]. Problem 5: 3 [20].

Problem 1. For each item, provide two levels of description. (Same prescription as problem 3, cwork1.)

1.
$$(a_k), a_k \in \mathbb{Q}, a_k \ge 0$$

2. $\sum_{k=1}^N z_k, z_k \in \mathbb{C}, |z_k| = 1$
3. $\frac{d}{dx} \Big[f(x) + g(x) \Big] = \frac{df(x)}{dx} + \frac{dg(x)}{dx}$
4. $e^{ix} = \cos(x) + i\sin(x)$
5. $\int_{-\infty}^{\infty} F(x, y) dx$
6. $f(x) \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} a_k x^k, a_k = \frac{1}{1+k^2}$
7. $\sum_{k=1}^3 \frac{\partial F(x_1, x_2, x_3)}{\partial x_k}.$

Problem 2. Explain, clearly and plainly.

I have three complex numbers, and I must decide if they lie on the same line in the complex plane. What shall I do? $[\not e, 50]$ [The numbers are not necessarily distinct.]

Problem 3. The following expressions define sets of real functions $f : \mathbb{R} \to \mathbb{R}$. Turn words into symbols, denoting by \mathcal{R} the set of real functions. [Use the Zermelo definition, and —where appropriate— the quantifier \forall . The meaning of 'vanish' is explained in the web-book.]

- 1. The set of positive real functions.
- 2. The set of real functions that do not vanish at the origin.
- 3. The set of real functions that vanish identically in the open unit interval.
- 4. The set of real functions that are positive for negative values of the argument.
- 5. The set of real functions that vanish at all even integers.
- 6. The set of real functions that may become zero only at the rationals.

Problem 4. Let \mathcal{R} denote the set of real functions. Turn symbols into words. $[\not e]$

1.
$$\{f \in \mathcal{R} : f(0) = 0\}$$

2.
$$\{f \in \mathcal{R} : \forall x \in \mathbb{Q}, f(x) = 0\}$$

3.
$$\{f \in \mathcal{R} : \forall x \in \mathbb{R}, x < 0 \Rightarrow f(x) = 0\}$$

4.
$$\{f \in \mathcal{R} : \forall x \in \mathbb{R}, f(x) \in \mathbb{Z}\}$$

5.
$$\{f \in \mathcal{R} : \forall x \in \mathbb{Q} \setminus \{0\}, f(x) \neq 0\}$$

6.
$$\{f \in \mathcal{R} : \forall x \in \mathbb{R} \setminus \{0\}, xf(x) > 0\}.$$

Problem 5. The following boolean expressions are false. State them with words, and then explain why they are false. $[\not e, 40]$

1.
$$\forall z \in \mathbb{C}, \ \bar{z} \neq z$$

2. $\forall x \in \mathbb{R} \setminus \{0\}, \ \frac{d|x|}{dx} = 1$
3. $\forall x, y \in \mathbb{R}, \ |x + y| < |x| + |y|,$
4. $\forall a \in \mathbb{R}, \ \sum_{k=0}^{\infty} a^k = \frac{1}{1-a}.$

[In part 1, what is \overline{z} ? In part 4, find an appropriate word for the symbol a.]