
B.Sc. EXAMINATION BY COURSE UNIT 2012

MTH5117 MATHEMATICAL WRITING

Duration: 2 hours

Date and time: May 30 2013, at 10.00am

Apart from this page, you are not permitted to read the contents

of this question paper until instructed to do so by an invigilator.

You should attempt all questions; marks awarded are shown next

to the questions.

Calculators are NOT permitted in this examination. The unau-
thorised use of a calculator constitutes an examination offence.
Complete all rough workings in the answer book and cross through
any work which is not to be assessed.

Important note: the Academic Regulations state that possession
of unauthorised material at any time by a student who is under
examination conditions is an assessment offence and can lead to
expulsion from QMUL.

Please check now to ensure you do not have any notes, mobile
phones or unauthorised electronic devices on your person. If you
have any, then please raise your hand and give them to an in-
vigilator immediately. Please be aware that if you are found to
have hidden unauthorised material elsewhere, including toilets and
cloakrooms, it will be treated as being found in your possession.
Unauthorised material found on your mobile phone or other elec-
tronic device will be considered the same as being in possession
of paper notes. Disruption caused by mobile phones is also an
examination offence.

Exam papers must not be removed from the examination room.

Examiner: Franco Vivaldi

c© Queen Mary, University of London (2014) TURN OVER

1



Marks are deducted for incorrect grammar/spelling. In a question, or part of

a question, the notation [ 6 ǫ, n] indicates that the answer should not contain

any mathematical symbols whatsoever, apart from numerals. The integer

n —when present— prescribes the approximate length (in words). In the

absence of this notation, mathematical symbols may be used freely.
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Question 1. [Marks: (5, 5, 5, 5, 5), (4, 5, 5, 5)]

(a) For each of the following mathematical objects, provide two levels of

description: 1) a coarse description, which only identifies the class to

which the object belongs (set, function, etc.); 2) a finer description,

which characterises the object in question as accurately as possible.

[ 6 ǫ ]

i) f : R
3 → Z

ii) {z ∈ C : |z − 1| < 1}
iii)

∏

∞

k=1
f(k)

iv) cos(2z) = 2 cos(z)2 − 1

v) {(1, 3), (3, 5), (5, 7), . . .}

(b) Express each of the following statements with symbols, using at least

one quantifier.

i) The set A is a subset of the odd integers.

ii) The function f is not increasing.

iii) The set A contains a largest element.

iv) Only finitely many terms of the sequence (ak) are zero.

Question 2. [Marks: 8, 8, 8] Explain the following concepts,

as clearly as you can. Combine words and symbols, as appropriate, and

provide an illustrative example of each concept.

(a) The image and inverse image of a set under a function.

(b) Relational operators and relational expressions.

(c) Periodic functions.
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Question 3. [Marks: 7,8] Each of the following definitions has

faults. i) Explain what they are; ii) write out an appropriate revision.

(a) Let f be the following real function

f : R → R f(x1, x2) =

√
x1 + x2

(x1 + 1)(x2 + 1)
.

(b) Let X be a subset of R, and let f(X) be the number of integers in

X. Denoting by #A the number of elements of any set A, we have

f : R → N f(X) = #(x ∈ X ∩ x ∈ Z).

Question 4. [Marks: 2,4,11]

Read the text displayed on the next two pages. Then write a report on it,

comprising

i) a short title [ 6 ǫ ];

ii) two concise key points [ 6 ǫ ];

iii) a summary of the document [ 6 ǫ, 150].

End of paper. An appendix of 2 pages follows.
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THIS PAGE AND THE NEXT PAGE CONTAIN MATERIAL FOR QUES-

TION 4.

The Pythagorean theorem says that the sum of the squares of the sides of a

right triangle equals the square of the hypotenuse. In symbols

a2 + b2 = c2. (1)

There are many right triangles all of whose sides are natural numbers, e.g.,

32 + 42 = 52, 52 + 122 = 132, 82 + 152 = 172.

A triple (a, b, c) of natural numbers satisfying (1) is called a Pythagorean

triple. Given a Pythagorean triple (a, b, c) and any natural number d, we

obtain at once a new Pythagorean triple (ad, bd, cd), because

(ad)2 + (bd)2 = (a2 + b2)d2 = c2d2 = (cd)2.

So clearly there are infinitely many triples, but they are uninteresting being

scaled versions of the same triple. This prompts the following definition.

A Primitive Pythagorean triple (PPT) is a Pythagorean triple

whose components have no common factor.

It’s easy to show that in a PPT one of a and b must be odd, and the other

even. Clearly a and b cannot both be even, otherwise c is also even, and

a, b, c are not co-prime. If a = 2x + 1 and b = 2y + 1 are both odd, then

a2 + b2 = 4x2 + 4y2 + 4x + 4y + 2

is even but not divisible by 4. However, c2 is even (being the sum of two

odd numbers), and being a square it’s divisible by 4, which is impossible.

By interchanging a and b, if necessary, we may assume that a is odd and b

is even. We find

a2 = c2 − b2 = (c − b)(c + b)

Suppose that d is a common factor of c − b and c + b. Then d also divides

their sum and difference:

(c + b) + (c − b) = 2c (c + b) − (c − b) = 2b
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Now, (a, b, c) is a PPT, and hence b and c have no common factor. Hence d

must divide 2, that is, d = 1 or d = 2. However, d also divides (c−b)(c+b) =

a2 which is odd, so d = 1.

We have shown that c − b and c + b have no common factor and that their

product is a square. The only way this can happens is if c− b and c + b are

themselves squares. (To see this, factor c−b and c+b into primes. Then the

primes appearing in the factorization of c−b will be distinct from the primes

in the factorisation of c + b, from the fundamental theorem of arithmetic.)

We write

c + b = s2 and c − b = t2

where s > t > 1 are odd integers (because b and c have opposite parity)

with no common factors. Solving these equations for b and c yields

c =
s2 + t2

2
and b =

s2 − t2

2
(2)

and then

a =
√

(c − b)(c + b) = st. (3)

So we have proved:

Theorem. Every primitive Pythagorean triple (a, b, c) with a odd and b

even is given by the formulae (2) and (3) where s > t > 1 are any odd

integers with no common factors.

In particular, this result shows that there are infinitely many primitive

triples. Dividing equation (1) by c2 we obtain

(a

c

)2

+

(

b

c

)2

= 1

so every PPT gives a rational point (x, y) = (a/c, b/c) on the unit circle,

lying in the first quadrant. Using (2) and (3) we obtain

(x, y) =

(

2st

s2 + t2
,
s2 − t2

s2 + t2

)

expressing our rational point in terms of the parameters t and s. This

formula gives us infinitely many rational points on the unit circle.
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