

Dynamical Systems (LTCC) Problem Sheet 5

Problem 5 ("Piecewise linear Markov maps")

A one-dimensional Markov map $f : I \to I$ with Markov partition $\{I_0, I_1, \ldots, I_{N-1}\}$ is said to be piecewise linear if the slope is constant on each part, i.e., $f'(x) = \gamma_{\ell}$ for $x \in int(I_{\ell})$. If $\chi_{\ell}(x)$ denotes the characteristic function of I_{ℓ} (i.e. $\chi_{\ell}(x) = 1$ if $x \in I_{\ell}, \chi_{\ell}(x) = 0$ if $x \notin I_{\ell}$) then

$$\rho(x) = \sum_{\ell=0}^{N-1} \rho_\ell \chi_\ell(x) \tag{1}$$

is a solution of the Frobenius-Perron equation for suitable values of ρ_{ℓ} ("the invariant density is piecewise constant").

a) Show that equation (1) solves the Frobenius-Perron equation if $(\rho_0, \rho_1, \ldots, \rho_{N-1})$ is the (right-)eigenvector of the so called transfer matrix

$$T_{kj} = \frac{A_{jk}}{|\gamma_j|}$$

with eigenvalue one.

b) Consider the map $f: [0,1] \rightarrow [0,1]$ defined by

$$f(x) = \begin{cases} 3x + 1/4 & \text{if } 0 \le x \le 1/4 \\ -2x + 3/2 & \text{if } 1/4 < x < 3/4 \\ 2x - 3/2 & \text{if } 3/4 \le x \le 1 \end{cases}$$

Sketch the graph of the map, determine a Markov partition, and state the corresponding topological transition matrix. Determine the transfer matrix of the map f and compute the invariant density. Compute the Lyapunov exponent of the map (you may assume the density to be ergodic).