Dynamical Systems (LTCC)
 Problem Sheet 3

Problem 3 ("Adiabatic elimination")
Centre manifold techniques can be used to explore the behaviour in an entire neighbourhood of a bifurcation point in parameter space. For that purpose consider the driven van der Pol equation

$$
\begin{align*}
\dot{u}(t) & =u(t)-\sigma v(t)-u(t)\left(u^{2}(t)+v^{2}(t)\right) \\
\dot{v}(t) & =\sigma u(t)+v(t)-v(t)\left(u^{2}(t)+v^{2}(t)\right)-\gamma \tag{1}
\end{align*}
$$

a) For $\gamma=\gamma_{*}=3 \sqrt{2} / 8$ and $\sigma=\sigma_{*}=\sqrt{5} / 4$ the system has the fixed point $\left(u_{*}, v_{*}\right)=(\sqrt{10} / 4, \sqrt{2} / 4)$. Show that the fixed point is non-hyperbolic and compute the centre eigenspace (i.e. the eigenvector for vanishing eigenvalue).
b) Consider a (small) interval of parameter values, $\gamma=\gamma_{*}+a(\delta \gamma)^{2}$, $\sigma=\sigma_{*}=1 / 2$ where a takes either the value $a=1$ or $a=-1$, and rewrite the equations (1) formally as three dimensional system

$$
\begin{equation*}
\delta \dot{u}=f(\delta u, \delta v, \delta \gamma), \quad \dot{v}=g(\delta u, \delta v, \delta \gamma), \quad \delta \dot{\gamma}=0 \tag{2}
\end{equation*}
$$

where $\delta u=u-u_{*}, \delta v=v-v_{*}$. Compute the right hand sides in equation (2) up to (and including) quadratic terms in $\delta \gamma, \delta u, \delta v$.
c) Determine the centre eigenspace of the system (2) at $(\delta u, \delta v, \delta \gamma)=(0,0,0)$ and write down the centre manifold

$$
\delta u=h(\delta v, \delta \gamma)
$$

to first order in the arguments (i.e. just the linear part).
d) Write down the equation of motion on the centre manifold

$$
\delta \dot{v}=f(h(\delta v, \delta \gamma), \delta v, \delta \gamma)
$$

up to (and including) second order in the arguments. Use an additional linear transformation to reduce the equation of motion to normal form. For which values of $a(\delta \gamma)^{2}$ (i.e. on which side of the bifurcation point/line) is the pair of fixed points generated?

