Dynamical Systems (LTCC)
 Problem Sheet 2

Problem 2 ("Conjugacy")

The phase portrait of a stable focus and a stable node may "look" differently, but a closer inspection will show that both are conjugate. For that purpose consider the two systems

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right)\binom{x}{y}, \quad\binom{\dot{\xi}}{\dot{\eta}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{\xi}{\eta} .
$$

Obviously $\left(x_{*}, y_{*}\right)=(0,0)$ is s stable focus and $\left(\xi_{*}, \eta_{*}\right)=(0,0)$ is a stable node (cf. the eigenvalues of the two matrices).
a) To establish a homeomorphism rewrite both equations in polar coordinates, $x=r \cos (\varphi), y=$ $r \sin (\varphi)$ and $\xi=\rho \cos (\psi), \eta=\rho \sin (\psi)$ respectively, and compute the time dependent solutions $r(t), \varphi(t)$ and $\rho(t), \psi(t)$. Eliminate the time t so that you end up with a mapping $(r, \varphi) \mapsto(\rho, \psi)$ (with appropriate choices for initial conditions).
b) Rewrite this mapping in terms of Cartesian coordinates $(x, y) \mapsto(\xi, \eta)$ and show that the mapping is invertible and continuous. Is the mapping smooth? What is the "geometric meaning" of this transformation?

