Problem 5

a) As we deal with densities of measures we do not have to worry about sets of Lebesgue measure zero, i.e., about boundary points of the partition.

$$
\begin{aligned}
\sum_{y \in f^{-1}(x)} \frac{1}{\left|f^{\prime}(y)\right|} \rho(y) & =\sum_{k} \sum_{y \in f^{-1}(x)} \frac{1}{\left|f^{\prime}(y)\right|} \chi_{k}(y) \rho_{k} \\
& =\sum_{k} \frac{1}{\left|\gamma_{k}\right|} \rho_{k} \sum_{y \in f^{-1}(x)} \chi_{k}(y) \\
& =\sum_{k, \ell} \frac{1}{\left|\gamma_{k}\right|} \rho_{k} \sum_{y \in f^{-1}(x)} \chi_{k}(y) \chi_{\ell}(x) \quad\left(\text { since } \quad 1=\sum_{\ell} \chi_{\ell}(x)\right) \\
& =\sum_{k, \ell} \frac{1}{\left|\gamma_{k}\right|} \rho_{k} A_{k \ell} \chi_{\ell}(x) \quad\left(\text { since } \quad A_{k \ell}=1 \Leftrightarrow f\left(I_{k}\right) \supseteq I_{\ell}\right) \\
& =\sum_{\ell}\left(\sum_{k} \frac{A_{k \ell}}{\left|\gamma_{k}\right|} \rho_{k}\right) \chi_{\ell}(x)=\rho(x)
\end{aligned}
$$

where the last step requires

$$
\sum_{k} \frac{A_{k \ell}}{\left|\gamma_{k}\right|} \rho_{k}=\sum_{k} T_{\ell k} \rho_{k}=\rho_{\ell}
$$

The square matrix $\underline{\underline{T}}$ has an eigenvalue one since the matrix has a left-eigenvector with eigenvalue one (mainly a reformulation of Perron's theorem)

$$
f\left(I_{k}\right)=\bigcup_{\ell, A_{k \ell}=1} I_{\ell} \Rightarrow \underbrace{\left|f\left(I_{k}\right)\right|}_{=\left|\gamma_{k}\right|\left|I_{k}\right|}=\sum_{\ell} A_{k \ell}\left|I_{\ell}\right| \Rightarrow\left|I_{k}\right|=\sum_{\ell} \frac{A_{k \ell}}{\left|\gamma_{k}\right|}\left|I_{\ell}\right|=\sum_{\ell}\left|I_{\ell}\right| T_{\ell k} .
$$

b)

Markov partition:

$$
I_{0}=[0,1 / 4], \quad I_{1}=[1 / 4,1 / 2], \quad I_{2}=[1 / 2,3 / 4] \quad I_{4}=[3 / 4,1]
$$

Transition matrix:

$$
\underline{\underline{A}}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Transfer matrix:

$$
\underline{\underline{T}}=\left(\begin{array}{cccc}
0 & 0 & 1 / 2 & 1 / 2 \\
1 / 3 & 0 & 1 / 2 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right)
$$

Invariant density $\rho(x)=\sum_{\ell} \rho_{\ell} \chi_{\ell}(x)$

$$
\begin{array}{lll}
\rho_{0}=\rho_{2} / 2+\rho_{3} / 2 & & \\
\rho_{1}=\rho_{0} / 3+\rho_{2} / 2+\rho_{3} / 2 & \Rightarrow & \rho_{1}=\rho_{0} / 3+\rho_{0}=4 \rho_{0} / 3 \\
\rho_{2}=\rho_{0} / 3+\rho_{1} / 2 & \Rightarrow & \rho_{2}=\rho_{0} / 3+2 \rho_{0} / 3=\rho_{0} \\
\rho_{3}=\rho_{0} / 3+\rho_{1} / 2 & \Rightarrow & \rho_{3}=\rho_{0} / 3+2 \rho_{0} / 3=\rho_{0}
\end{array}
$$

Normalisation: $1=\left(\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3}\right) / 4, \Rightarrow \rho_{0}=12 / 13$.
Lyapunov exponent

$$
\Lambda=\int_{I} \ln \left|f^{\prime}(x)\right| \rho(x) d x=\sum_{\ell} \ln \left|\gamma_{\ell}\right| \rho_{\ell}\left|I_{\ell}\right|=\frac{3}{13} \ln 3+\frac{10}{13} \ln 2
$$

