Problem 4

a) Let.$\sigma_{0} \sigma_{1} \sigma_{2} \ldots$ be a symbol sequence. Denote by.$\tau_{0} \tau_{1} \tau_{2} \ldots$ the corresponding Milnor-Thurston sequence, and by . $\tilde{1}_{1} \tilde{\tau}_{2} \tilde{\tau}_{3} \ldots$ the Milnor-Thurston sequence of the shifted symbol sequence.$\sigma_{1} \sigma_{2} \sigma_{3} \ldots$ (which is certainly not necessarily a shift of the sequence.$\tau_{0} \tau_{1} \tau_{2} \ldots$.). Let

$$
x=\sum_{k=0}^{\infty} \frac{\tau_{k}}{2^{k+1}}, \quad y=\sum_{k=0}^{\infty} \frac{\tilde{\tau}_{k+1}}{2^{k+1}} .
$$

Since $\tau_{0}=\sigma_{0}$ and

$$
0 \leq \sum_{k=1}^{\infty} \frac{\tau_{k}}{2^{k+1}} \leq \sum_{k=1}^{\infty} \frac{1}{2^{k+1}}=\frac{1}{2}
$$

one has $x \in I_{\sigma_{0}}$ (and for a similar reason $y \in I_{\sigma_{1}}$).
Case I: suppose $\sigma_{0}=0$. Then the finite strings $\sigma_{0} \sigma_{1} \ldots \sigma_{k-1}$ and $\sigma_{1} \sigma_{2} \ldots \sigma_{k-1}$ have the same number of ones, i.e., $\tau_{k}=\tilde{\tau}_{k}$ (as both symbols are derived from $\sigma_{k}!$). Since $x \in I_{0}$ we have

$$
T(x)=2 x=2 \sum_{k=1}^{\infty} \frac{\tau_{k}}{2^{k+1}}=\sum_{k=0}^{\infty} \frac{\tau_{k+1}}{2^{k+1}}=\sum_{k=0}^{\infty} \frac{\tilde{\tau}_{k+1}}{2^{k+1}}=y .
$$

Case II: suppose $\sigma_{0}=1$. Then the number of ones in the finite string $\sigma_{0} \sigma_{1} \ldots \sigma_{k-1}$ exceeds the number of ones in the finite string $\sigma_{1} \sigma_{2} \ldots \sigma_{k-1}$ by one, i.e., $\tilde{\tau}_{k}=1-\tau_{k}(!)$. Since $x \in I_{1}$ we have

$$
T(x)=2(1-x)=2\left(\sum_{k=0}^{\infty} \frac{1}{2^{k+1}}-\sum_{k=0}^{\infty} \frac{\tau_{k}}{2^{k+1}}\right)=2 \sum_{k=1} \frac{1-\tau_{k}}{2^{k+1}}=\sum_{k=1}^{\infty} \frac{\tilde{\tau}_{k}}{2^{k}}=y
$$

b) Let $x \in[0,1]$ and let.$\tau_{0} \tau_{1} \tau_{2} \ldots$ denote a binary representation of x. Then the recursive construction

$$
\begin{aligned}
& \sigma_{0}=\tau_{0} \\
& \sigma_{k}= \begin{cases}\tau_{k} & \text { if the string } \sigma_{0} \sigma_{1} \ldots \sigma_{k-1} \text { contains an even number of ones } \\
1-\tau_{k} & \text { if the string } \sigma_{0} \sigma_{1} \ldots \sigma_{k-1} \text { contains an odd number of ones }\end{cases}
\end{aligned}
$$

gives the unique symbol sequence.$\sigma_{0} \sigma_{1} \sigma_{2} \ldots$ such that the corresponding Milnor-Thurston sequence coincides with.$\tau_{0} \tau_{1} \tau_{2} \ldots$, i.e., $h\left(. \sigma_{0} \sigma_{1} \sigma_{2} \ldots\right)=x$.
c) The only way for a binary representation to be not unique is an infinite tail of zeros or ones, i.e., for $N \geq 0$

$$
. \tau_{0} \tau_{1} \ldots \tau_{N-1} 10000 \ldots \quad \text { and } \quad . \tau_{0} \tau_{1} \ldots \tau_{N-1} 01111 \ldots
$$

give the same real number. The two symbol sequences corresponding to these Milnor-Thurston sequences are (see part b)

$$
\begin{equation*}
. \sigma_{0} \sigma_{1} \ldots \sigma_{N-1} 110000 \ldots \quad \text { and } \quad . \sigma_{0} \sigma_{1} \ldots \sigma_{N-1} 010000 \ldots \tag{1}
\end{equation*}
$$

with suitable symbol string $\sigma_{0} \sigma_{1} \ldots \sigma_{N-1}$ (if $\sigma_{0} \sigma_{1} \ldots \sigma_{N-1}$ contains an even number of ones then .$\sigma_{0} \sigma_{1} \ldots \sigma_{N-1} 110000 \ldots$ has Milnor-Thurston sequence.$\tau_{0} \tau_{1} \ldots \tau_{N-1} 10000 \ldots$ and.$\sigma_{0} \sigma_{1} \ldots \sigma_{N-1} 010000 \ldots$ has Milnor-Thurston sequence.$\tau_{0} \tau_{1} \ldots \tau_{N-1} 01111 \ldots$, if $\sigma_{0} \sigma_{1} \ldots \sigma_{N-1}$ contains an odd number of ones then $\sigma_{0} \sigma_{1} \ldots \sigma_{N-1} 110000 \ldots$ has Milnor-Thurston sequence.$\tau_{0} \tau_{1} \ldots \tau_{N-1} 01111 \ldots$ and $\sigma_{0} \sigma_{1} \ldots \sigma_{N-1} 010000 \ldots$ has Milnor-Thurston sequence.$\left.\tau_{0} \tau_{1} \ldots \tau_{N-1} 10000 \ldots\right)$.
The two sequences in equation (1) are mapped after N symbol shifts to $.11000 \ldots$ and $.01000 \ldots$ respectively, i.e., the point $x \in[0,1]$ which has symbol sequences given in equation (1) is mapped
to $1 / 2$ after N applications of the tent map (it is easy to check that $1 / 2$ is the unique value with symbolic coding $.11000 \ldots$ and $.01000 \ldots$. . . Thus

$$
J=\bigcup_{N \geq 0} T^{-N}(1 / 2)=\left\{m / 2^{n}: 1 \leq m \leq 2^{n}-1 \text { and } n \geq 1\right\}
$$

The symbolic dynamics fails to be one to one at the boundaries of the cylinder sets, but the set J is countable (i.e. "small" with respect to the Lebesgue measure).

