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1 Some local analysis
We review some concepts regarding the behaviour of functions in the vicinity of a
point.

A neighbourhood of a point x ∈ R is any open interval1 containing x. In the
mathematics literature the accepted meaning of this term is considerably more gen-
eral (an open set containing x), but the given definition will suffice for our purpose.

The neighbourhood concept characterises proximity in a concise manner that
does not rely on quantitative information. A property that holds in a neighbourhood
of a point is said to be local. For instance, the sentence ‘The function f is bounded
in a neighbourhood of x0’ means that there is an open interval containing x0 whose
image under f is a bounded set. We could express the same idea by saying that the
function f is ‘locally bounded’.

This concept is generalised naturally to higher dimensions: a neighbourhood of
x ∈ R2 is an open disc containing x; in three dimensions we have an open sphere,
etc.

1.1 The Big-O notation
Let f and g be real functions. We write

f (x) = O(g(x)) as x→ 0

to mean that there is a constant C such that | f (x)| < C|g(x)| holds in a neighbour-
hood of the origin, that is, for all sufficiently small |x|.

For example

sin(x) = x− x3

3!
+O(x5)

means that there is a constant C such that, for small enough |x|∣∣∣∣sin(x)− x+
x3

3!

∣∣∣∣<C
∣∣∣x5
∣∣∣ .

In fact we can choose |x|< 1 and C = 1/5!. (Think about it.)
There is an analogous definition for the case x→ ∞, and indeed for x tending

to any real or complex value. Note that O(1) just means bounded in the relevant
domain.

1An interval is open if it does not contain its end-points
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For example, as x→ 0, we have

x2 = O(x) cos(x)−1 = O(x2) cos(x)+1 = O(1),
ex−1

x
= 1+O(x)

1
1− x

= 1+ x+O(x2).

As x→ ∞, we have

x = O(x2)
x2 +1

x3 = O
(

1
x

)
arctan(x) = O(1),

x log(x) = O(x2) log(x)6 = O(
√

x).

The following properties of the big-O notation are useful in computations (here
f and g are arbitrary real functions and c is a constant):

c f (x) = O( f (x))
O( f (x))O(g(x))) = O( f (x)g(x))

O( f (x))+O(g(x)) = O(| f (x)|+ |g(x)|)
O( f (x)g(x)) = f (x)O(g(x))

O( f (x)2) = O( f (x))2.

Let us apply these identities in some examples. Assume that f (x) = O(1) as
x→ 0. Then

eO( f (x)) = 1+O( f (x)) x→ 0.

As x→ 0 and y→ 0 we have:

(1+ x)y = ey log(1+x)

= 1+ y log(1+ x)+O(y2 log(1+ x)2)

= 1+ yx+O(yx2)+O(y2x2)

= 1+ yx+O(yx2).

Thus

(1+ x)y =

{
1+ yx+O(x2) y fixed
1+O(y) x fixed.

The big-O notation represents a rare instance in mathematics in which the sym-
bol ‘=’ does not mean equal. Indeed from the statements

sin(x) = O(x) x2 = O(x) x→ 0
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we cannot deduce that sin(x) = x2 in a neighbourhood of 0. Here the equal sign
really denotes membership: sin(x) ∈O(x), where O(x) is the set of functions which
are defined in a neighbourhood of the origin and have the stated property. Thus

O(x) =
{

x,x2,sin(x), log(1+ x), . . .
}

x→ 0.

Exercise 1.1. Prove that

1+2x+O(x2) = (1+2x)(1+O(x2)) x→ 0.

Exercise 1.2. Prove or disprove

1.
1

1+ x2 = 1+O(x) x→ 0

2. cos(x)sin(x) = O(x2) x→ ∞

3. cos(x)sin(x) = O(x2) x→ 0

4. cos(O(x)) = 1+O(x2) all x

5. O(x+ y) = O(x2)+O(y2) x,y→ ∞

6. e(1+O(1/n))2
= e+O(1/n) n→ ∞

7. nlog(n) = O(log(n)n) n→ ∞

[Answer: T,T,F,T,T,T,T]

Exercise 1.3. Multiply (log(n) + γ +O(1/n)) by (n+O(
√

n)) and express your
answer in O-notation.
[Answer: n log(n)+ γn+O(

√
n log(n))]

1.2 Local theorems
Let k be a non-negative integer. A real function f is said to be of class Ck (written
f ∈ Ck) if f is differentiable k times in its domain of definition, and if the k-th
derivative is continuous there. Class C0 mean continuous, while class C∞ means
that the function has continuous derivatives of all orders. Clearly, if f ∈Ck+1 then
f ∈Ck.
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For example the function f (x) = |x| is C0 (but not C1), f (x) = |x|3 is C2 (but not
C3), while f (x) = sin(x)2 is C∞.

If the stated smoothness property hold only in a domain U ⊂ R, we make this
explicit by writing f ∈Ck(U).

1. TAYLOR’S THEOREM. This is the most important theorem in local analysis.

Theorem 1.1. Suppose that f : U → R is a Cm+1 function defined over an open
interval U , and let a and x be any two points in U . Then there is a point ζ between
a and x such that

f (x) =
m

∑
k=0

1
k!

f (k)(a)(x−a)k +
1

(m+1)!
f (m+1)(ζ )(x−a)m+1

where f (k) denotes the k-th derivative of f .

So we have, for any m> 0

f (x) =
m

∑
k=0

1
k!

f (k)(a)(x−a)k +O((x−a)m+1) x→ a.

2. THE IMPLICIT FUNCTION THEOREM. In what follows you may regard an open
subset of R2 as an open disc.

Theorem 1.2. Let Ω ⊂ R2 be an open set and let F : Ω→ R be a differentiable
function with continuous partial derivatives. Moreover let (x0,y0) ∈Ω be such that

F(x0,y0) = c,
∂F
∂y

∣∣∣∣
(x0,y0)

6= 0.

Then there exist open intervals U,V with (x0,y0)⊂U×V ⊂Ω and a differentiable
function g such that the two sets

{(x,y) ∈Ω : F(x,y) = c} and {(x,g(x)) : x ∈U}

agree on U×V .

The theorem says that, provided that ∂F/∂y is non-zero at (x0,y0), then near this
point the level set F(x,y) = c may be expressed as the graph of a smooth function
y = y(x) = g(x). The role of x and y may be interchanged to obtain an analogous
statement for the implicit function x = x(y).

For example, the level set F(x,y) = x2 + y2 = c2 (a circle centred at the origin)
is the graph of a function y = g(x) as long as ∂F/∂y = 2y is non-zero, that is, y 6= 0.
At the points (±c,0) two distinct implicit functions coalesce.
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2 Flows on the line
Let U ⊂R be an open interval (possibly infinite, or semi-infinite), and let v : U→R
be a function (called a vector field). A solution of the first order ordinary differen-
tial equation

ẋ = v(x) x ∈U (1)

where ẋ = dx/d t, is a differentiable function

x : I→U

of an open interval I ⊂ R (possibly infinite, or semi-infinite) such that

dx
d t

∣∣∣∣
t=τ

= v(x(τ)) (2)

The value x0 = x(0) is called the initial condition. The initial time t = 0 could be
replaced by any t0 ∈ R.

Let a be a real number. The solution of the differential equation

ẋ = ax x(0) = x0 ∈ R (3)

is x(t,x0) = x0eat . This function is defined over the entire real line.

2.1 Existence and uniqueness
The following theorem gives conditions under which the solution of equation (1)
exists and is unique for any choice of initial conditions.

Theorem 2.1. Let v and U be as above, with v ∈C1(U). Then for every x0 ∈U the
following holds:

i) Equation (1) has a solution x = x(t) with x(0) = x0, valid for all t sufficiently
near 0.

ii) This solution is unique, that is, any two solutions x(1) and x(2) coincide in a
neighbourhood of t = 0.

iii) If v(x0) = 0, then x(t)≡ x0; if v(x0) 6= 0, then

t =
∫ x(t)

x0

dz
v(z)

. (4)
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If v(x0) 6= 0, then the function t = t(x) defined by equation (4) may be inverted
in some neighbourhood of t = 0, giving the solution x = x(t). Invertibility follows
from the implicit function theorem (see section 1.2) applied to the function

F(t,x) = t−
∫ x(t)

x0

dz
v(z)

.

Indeed from the fundamental theorem of Calculus, the derivative of F with respect
to x is equal to the integrand, and the latter is non-zero by assumption. Thus the
expression (4) may be inverted to give a differentiable function x = x(t). We see that
solving (1) involves an integration (by separation of variables) and an inversion.

The restrictions appearing in the formulation of the theorem are necessary. Thus
the solution x(t) may not be defined for all real t. For instance, the system

ẋ = x2 x(0) = x0

has solution
x(t,x0) =

x0

1− x0t
.

For x0 6= 0, this function is not defined over the whole R. It is defined in the interval
(−∞,1/x0) for x0 > 0, and (1/x0,∞) for x0 < 0.

The differentiability of the vector field is necessary for uniqueness. For example,
the system

ẋ =
√

x x(0) = x0 x> 0

has solution
x(t,x0) = (t +

√
x0)

2/4.

However, if x0 = 0, then there is also the solution which is identically zero for all t.
So the solution is not unique.

2.2 Stability
A point x∗ ∈U for which v(x∗) = 0 is called a fixed point (or equilibrium point)
of the flow.

An equilibrium point x∗ is (Lyapounov) stable if for every neighbourhood V of
x∗ there is a neighbourhood W of x∗ such that all solutions x = x(t) with x(0) ∈W
remain in V for all times. This means that all points sufficiently close to x∗ remain
near x∗, although they do not necessarily approach x∗.
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Lyapounov stability is continuity in disguise. Indeed, let us consider the one-
parameter family of functions

ϕt : U →U ϕt(x0) = x(t,x0).

From theorem 2.1 we know that ϕt is defined in U for all sufficiently small t. If the
equilibrium point x∗ ∈U is stable, then, for these values of t, all functions ϕt are
continuous at x∗.

An equilibrium point x∗ (v(x∗)= 0) is asymptotically stable if it is stable2 and if
there is a neighbourhood V of x∗ such that, for any x0 ∈V all solutions x = x(t,x0)
converge to x∗ as t → ∞. The equation (3) has the fixed point x∗ = 0. If a < 0,
then x(t,x0)→ 0 for any choice of the initial condition x0. In this case asymptotic
stability is a global property: V =U = R.

A point may be stable but not asymptotically stable, in which case it may be
called called neutrally (or marginally) stable. For instance, if v(x) = 0, then all
points x∗ ∈R are fixed and stable, but not asymptotically stable. A more meaningful
example is given in exercise 2.1.

The point x∗ is unstable if there is a neighbourhood V of x∗ such that all so-
lutions with x(0) ∈ V \ {x∗} eventually leave V . In the system ẋ = x, the origin
is unstable. Note that stable is not the logical negation of unstable, that is, there
are fixed points which are neither stable nor unstable, for instance the origin in the
system v(x) = x2.

Consider now an equilibrium point x∗ for a field v, and suppose that λ = v′(x∗) 6=
0. Without loss of generality, we may assume that x∗ = 0. Taylor’s theorem gives

v(x) = λx+g(x) where g(x) = O(x2).

Since λ 6= 0, we choose ε such that 0 < ε < |λ |. Now g′(x) = O(x) tends to 0 as
x tends to zero, and so there is a neighbourhood U of 0 such that, for all x ∈U we
have |g′(x)|< ε , and hence (by integration) |g(x)|< ε|x|. This implies that the sign
of v(x) is the same as that of its linear part λx. The argument above, together with
exercise 2.2 ii) below, gives the following result.

Theorem 2.2. Suppose that v is a C1 function and that x∗ is an equilibrium point.
If v′(x∗)< 0, then x∗ is asymptotically stable; if v′(x∗)> 0, then x∗ is unstable.

Thus the stability of an equilibrium point x∗ of a C1 vector field is completely
determined by the derivative of the field at x∗, as long as this derivative is non-

2Requiring stability is redundant here —see exercise 2.2 iv)— but it’ll become essential for flows
on the circle, or in higher dimensions.
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zero. An equilibrium point such that v′(x∗) 6= 0 is said to be hyperbolic. The non-
hyperbolic points play a key role in the description of the parameter-dependence of
a vector field, as we shall see in the next section.

Exercise 2.1. Consider the differential equation

ẋ = v(x) =

{
0 if x = 0
x2 sin(log(|x|)) if x 6= 0.

Show that in the open interval (−1,1), the function v is of class C1 but not C2, and
that the origin is neutrally stable (stable but not asymptotically stable).
[Show that v′′(x) = sin(log(|x|))+3cos(log(|x|)).]
Exercise 2.2. Let x∗ be an equilibrium point of ẋ = v(x), on the line.

i) Prove that x∗ is stable if there is a neighbourhood U of x∗ such that (x−
x∗)v(x)6 0 for all x ∈U .

ii) Prove that x∗ is asymptotically stable if there is a neighbourhood U of x∗ such
that (x− x∗)v(x)< 0 for all x ∈U \{x∗}.

iii) Show that in the statement i) above, the ‘if’ could not be replaced by ‘if and
only if’.

iv) Prove that if all orbits in a neighbourhood of x∗ converge to x∗, then x∗ is
stable.

3 Bifurcations
We consider a family v of vector fields on the line depending smoothly on a real
parameter r:

ẋ = v(x,r) v : R2→ R. (5)

(More generally, the domain of v will be an open domain in R2.) In the literature
one often finds the notation vr(x) for v(x,r), which emphasises the subordinate role
of the argument r (this is why r is called a parameter rather than a variable). [Even
though the co-domain of v is R, not R2, expression (5) may still be interpreted as
defining a vector field on R2, which is everywhere parallel to the x-axis.]

We require that the field v be a differentiable function of x for every r, so that
the existence and uniqueness theorem of section 2 applies. We also require that v
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be a differentiable function of r, that is, as the parameter is varied, the vector field
changes smoothly. In symbols: v ∈C1(R2).

The solution set B of the fixed point equation v(x,r) = 0, given by

B = {(r,x) ∈ R2 : v(x,r) = 0} (6)

is called the bifurcation diagram of the field v. Take a point (r0,x0) ∈B, repre-
senting a fixed point of the vector field v for a particular parameter value r0. If the
condition

∂v
∂x

∣∣∣∣
(x0,r0)

6= 0 (7)

is satisfied, then the fixed point is hyperbolic. The implicit function theorem then
ensures that as r varies near r0, the location of the fixed point is given by a differ-
entiable function x∗ = x∗(r), with x0 = x∗(r0). The local function x∗(r) represents a
branch of the bifurcation diagram.

From theorem 2.2 we know that the stability properties of the point x∗ at r = r0
are determined by the sign of the derivative (7). We now show that the same is true
for all r sufficiently close to r0. Indeed we have

∂v
∂x

∣∣∣∣
(x0,r0)

=
∂v
∂x

∣∣∣∣
(x∗(r0),r0)

6= 0,

and furthermore, both x∗ and v are continuous functions of r. It follows that there is
a neighbourhood V of r0 such that for all r ∈V we have

∂v
∂x

∣∣∣∣
(x∗(r),r)

6= 0

and moreover the sign of this derivative agrees with that of (7), as desired.
We have shown that the flow near a hyperbolic equilibrium point is insensitive to

small perturbations of the vector field. So to obtain qualitative changes of behaviour
when a parameter is varied, the spatial derivative of the vector field must vanish.
Thus we require the simultaneous conditions:

v(x0,r0) = 0
∂v
∂x

∣∣∣∣
(x0,r0)

= 0. (8)

A parameter value for which conditions (8) holds is called a critical (or bifurca-
tion) parameter r = rc. In this case the fixed point x∗ is (at least) a double zero of
v, that is, as x→ x∗ we have

v(x,rc) = a(x− x∗)n +O
(
(x− x∗)n+1) a 6= 0, n> 2.
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At a bifurcation point the implicit function theorem does not apply. Geometri-
cally this is a point in the bifurcation diagram where several branches of the fixed
point function come together. The order n of the zero of v at x∗ is given by the
number of fixed points that coalesce at the critical parameter.

3.1 Types of bifurcations
We consider three types of bifurcations of fixed points, which are represented by
the following one-parameter families of differential equations:

ẋ = r− x2 saddle-node (9)
ẋ = rx− x2 transcritical (10)
ẋ = rx± x3 pitchfork (11)

It is immediate to check that in all cases the bifurcation conditions (8) are satisfied
at (x,r) = (0,0), which is therefore a bifurcation point.

SADDLE-NODE. For the general system (5), a saddle-node bifurcation at (x,r) =
(x∗,rc) is defined by the following transversality conditions, which are clearly
verified by (9):

∂v
∂ r

∣∣∣∣
(x∗,rc)

6= 0
∂ 2v
∂x2

∣∣∣∣
(x∗,rc)

6= 0. (12)

The first condition, together with the implicit function theorem, implies that, as r
varies, the fixed point of (5) draws a curve which is tangent to the line r = rc. The
second condition ensures that the bifurcation curve has a quadratic tangency with
r = rc, and locally lies on one side of this line.

With the normal form (9) branching occurs above the bifurcation value where
two equilibria, one stable and one unstable, are present, while there are no fixed
points below the bifurcation value. The bifurcation diagram for the alternative nor-
mal form v(x,r) = r+x2 is obtained from that of (9) via a reflection with respect to
the origin in the r− x-plane.

TRANSCRITICAL. We see that the equation (10) has the fixed point x = 0 for all
parameter values. Any system with such a feature cannot go through a saddle-node
bifurcation, since the latter requires that there are no fixed points near the bifurcation
point. This prevents the first transversality condition in (12) from being satisfied.
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We replace this condition by an alternative requirement, which is satisfied by the
normal form (10)

∂ 2v
∂ r∂x

∣∣∣∣
(x∗,rc)

6= 0
∂ 2v
∂x2

∣∣∣∣
(x∗,rc)

6= 0. (13)

PITCHFORK. A vector field which is an odd function of x, namely

v(−x,r) =−v(x,r)

is said to be symmetric or equivariant. A symmetric system must have a fixed
point at the origin. However, the second condition in (13) cannot be satisfied by an
odd function, and so we replace it by the following transversality conditions

∂ 2v
∂ r∂x

∣∣∣∣
(x∗,rc)

6= 0
∂ 3v
∂x3

∣∣∣∣
(x∗,rc)

6= 0 (14)

which are satisfied by the normal form (11) for both choices of sign.
The sign of the third derivative at bifurcation determines both the direction of

bifurcation and the stability properties of all fixed points. If ∂ 3v/∂x3 is negative,
then the branching occurs above the bifurcation value, where two stable and one
unstable fixed points are present, while below the bifurcation point there is a single
stable equilibrium. In this case we speak of a supercritical pitchfork bifurcation.

If the third derivative is positive, then we have a subcritical pitchfork bifurca-
tion. The branching occurs below the bifurcation value (two unstable and one stable
equilibria), while above bifurcation there is a single unstable fixed point.

4 Flows on the circle
We denote the unit circle by S1. To define a vector field on S1 we consider functions
v : R→ R with are differentiable and 2π-periodic, namely:

i) v ∈C1(R)
ii) ∀x ∈ R, v(x+2π) = v(x).

Then for any x ∈ R and k ∈ Z we have v(x) = v(x+2kπ) and hence v′(x) = v′(x+
2kπ). Such a function defines a vector field on S1.
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On the circle we must refine the notion of stability. In section 2.2 we introduced
two definitions of stability: Lyapounov stability (all orbits near a fixed point x∗

remain near it for all times) and the stronger asymptotic stability (all orbits near a
fixed point converge to it).

On the circle a new phenomenon emerges. Consider the system ẋ = 1− cos(x)
on S1. The fixed point x∗ = 0 is not stable (hence not asymptotically stable), yet
all orbits converge to it. We call such a point attracting —to differentiate it from
asymptotically stable. More precisely, a fixed point x∗ is attracting if there is a
neighbourhood U of x∗ such that, for any x0 ∈U all solutions x = x(t,x0) converge
to x∗ as t→ ∞. We see that an asymptotically stable point is also attracting, but not
vice-versa.

4.1 Periodic functions
We review some methods for constructing periodic functions.

The quintessential 2π-periodic functions are the sine and the cosine, which are
C∞, and for any k ∈ N, the functions

ck(x) = cos(kx) sk(x) = sin(kx)

have the same properties. Therefore any finite linear combination of these functions

v(x) = a0 +
n

∑
k=1

akck(x)+bksk(x) (15)

where ak,bk are arbitrary real numbers, will also have the same properties.
Powers of sines and cosines are also C∞ and 2π-periodic. Moreover, these func-

tions are rational linear combinations of ck and sk. For example:

sin2(x) =
1
2
− 1

2
c2(x)

sin3(x) =
3
4

s1(x)−
3
4

s3(x)

sin4(x) =
3
8
− 1

2
c2(x)+

1
8

c4(x).

It follows that any polynomial in ck and sk will be of the form (15).
A useful device for constructing periodic functions with a prescribed smooth-

ness is to consider the interval I = (−π,π] (or any half-open interval of length 2π)
and any function f : I → R with the property that f (−π) = f (π) and f ′(−π) =
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f ′(π). Then we extend f periodically to a function v defined over the entire real
line, by letting v(x) = f (x), where x is the unique element of the set I ∩ x+ 2πZ.
(Think about it.) The smoothness of v doesn’t depends only on the smoothness of
f , but also —crucially— on the behaviour of f at the end-points of I.

For example, let us consider the C∞ function

f : (−π,π]→ R f (x) = x(π2− x2). (16)

We verify that f (π) = f (−π) = 0, and f ′(π) = f ′(−π) =−2π2. However, f ′′(π) =
−6π but f ′′(−π) = 6π . Thus the periodic extension v of f is C1 but not C2.

The theory of periodic functions requires considering the limit n→ ∞ in (15).
The resulting series is called a Fourier series, and any non-pathological periodic
function will admit such a representation. The questions of convergence and prop-
erties of the sum of a Fourier series lie beyond the scope of this course. Here we
merely note that any function which is not of class C∞, such as the piecewise cubic
function given above, will necessarily be represented by an infinite Fourier series.

Exercise 4.1. Define a vector field on the circle which is of class C2 but not C3.
(Choose an even quartic polynomial.)

Exercise 4.2. Show that the function v in (15) is even (odd, respectively) precisely
if all coefficients bk (ak, respectively) are zero.

Exercise 4.3. Show that nothing is gained by extending the sum (15) to negative
indices.

Exercise 4.4. Compute the coefficients of the Fourier series of the periodic exten-
sion of the function (16).

5 Some linear algebra
The study of first-order linear ordinary differential equations on the plane is an
exercise in linear algebra. In preparation for section 6 we review some necessary
material.

Two vectors v1 and v2 in R2 are said to be linearly independent if the equation

xv1 + yv2 = 0

admits only the trivial solution x = y = 0.
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Let A be a 2×2 real matrix:

A =

(
a b
c d

)
a,b,c,d ∈ R. (17)

The quantities
Tr(A) = a+d Det(A) = ad−bc

are called the trace and the determinant of A, respectively.
The matrix A is invertible if there is a 2×2 real matrix A−1 such that AA−1 =

A−1A = 1, where 1 is the 2×2 identity matrix. A matrix is invertible if and only if
its determinant is non-zero.

A (real or complex) number λ is called an eigenvalue of a matrix A if there is
a (real or complex) non-zero vector v such that Av = λv, that is, (A−λ1)v = 0.
The vector v is called an eigenvector of A corresponding to the eigenvalue λ . The
eigenvectors corresponding to a given eigenvalue form a linear space (the kernel of
the matrix A−λ1), and two eigenvectors corresponding to distinct eigenvalues are
linearly independent. (The converse, however, is not true.)

The eigenvalues of a matrix A are the roots of the quadratic polynomial

Det(A−λ1) = λ
2−Tr(A)λ +Det(A) = 0, (18)

called the characteristic polynomial of A.
For the purpose of classifying matrices, we introduce three special parametrised

families of matrices, called Jordan canonical matrices:

J(1) =
(

λ1 0
0 λ2

)
J(2) =

(
λ 1
0 λ

)
J(3) =

(
α β

−β α

)
(19)

Where λ1,λ2,λ ,α,β ∈ R and β 6= 0. The following theorem explains why Jordan
canonical matrices are important.

Theorem 5.1. Let A be a 2× 2 real matrix. Then there is an invertible 2× 2 real
matrix P and a Jordan canonical matrix J such that

P−1AP = J. (20)

Moreover, the matrices A and J have the same eigenvalues.
The matrix J appearing in (20) is called the Jordan canonical form of the

matrix A. This theorem says that if we change co-ordinates in an appropriate way,
then any matrix will be transformed into precisely one of the three Jordan matrices
(19).

The following statements are readily verified:
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1. The matrix J(1) has two real eigenvalues λ1 and λ2, with corresponding eigen-
vectors v1 =

(
1
0
)

and v2 =
(

0
1

)
.

2. The matrix J(2) has a single real eigenvalue λ with eigenvector v1.

3. The matrix J(3) has two complex conjugate eigenvalues λ± = α ± iβ with
eigenvectors v± =

(
1
±i
)
.

To determine the Jordan form of A, we compute the eigenvalues of A. If they
are real and distinct then the Jordan form is J(1); if they are complex then the Jordan
form is J(3). If the eigenvalues are equal, then the Jordan form is J(1) if there are
two linearly independent eigenvectors (hence any vector is an eigenvector and A is
already in Jordan form) and J(2) otherwise.

Once we have identified the Jordan form, the following result allows us to com-
pute the matrix P of equation (20). In what follows we denote by (v1|v2) the matrix
whose columns are the column vectors v1 and v2.

Theorem 5.2. Let A, J, and P = (v1|v2) be as in theorem 5.1. Then the vectors v1
and v2 are determined as follows:

1. If J = J(1) then v1 and v2 are any two linearly independent eigenvectors of A.

2. If J = J(2) then v1 is an eigenvector of A and v2 satisfies the equation

(A−λ1)v2 = v1.

3. If J = J(3) then v1 and v2 are the real and imaginary part of a complex eigen-
vector of A.

To see why this theorem works, first note that in all cases the columns of
P = (v1|v2) are linearly independent (see exercise 5.3), so that P is invertible. We
compute:

J = J(1) : AP = (Av1|Av2) = (λ1v1|λ2v2) = PJ(1)

J = J(2) : AP = (Av1|Av2) = (λv1|v1 +λv2) = PJ(2)

J = J(3) : AP = (Av1|Av2) = (αv1−βv2|βv1 +αv2) = PJ(3).

[In the last expression, we have used Av = A(v1 + iv2) = (α + iβ )(v1 + iv2) =
(αv1−βv2)+ i(βv1 +αv2).] Thus, in each case P−1AP = J.
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Exercise 5.1. Using the notation of theorems 5.1 and 5.2, compute J and P for the
following matrices A:(

5 −4
4 −5

) (
0 1
−4 4

) (
0 1
−ω2 2α

)
where α and ω are real constants (you’ll have to consider their relative magnitude.)
In each case verify that P−1AP = J.

Exercise 5.2. Prove that any two conjugate matrices, that is, two matrices A and J
related as in equation (20), have the same characteristic polynomial.

Exercise 5.3. Prove that the vectors v1 and v2 of theorem 5.2 are linearly indepen-
dent in each case.
[In case 2, show that (A−λ1)2v2 = 0, that is, v2 is a generalised eigenvector.]

6 Linear planar systems
We begin out study of first-order ordinary differential equations on the plane with
the linear systems:

ż = Az z =
(

x
y

)
A =

(
a b
c d

)
(21)

where a,b,c,d ∈ R. (In this section, the points z ∈ R2 are represented as column
vectors.) The vector field ż is a linear function of the co-ordinates. Since A0 = 0,
all linear systems have a fixed point at the origin.

The linearity of ż = Az implies that if z1(t) and z2(t) are solutions of (21) then
so is any linear combination of z1 and z2:

z(t) = c1z1(t)+ c2z2(t)

where c1 and c2 are arbitrary real numbers. This is called the superposition prin-
ciple, which says that the solution set of the system (21) is a real vector space. To
determine its dimension, we must generalise the notion of linear independence.

Two solutions z1(t) and z2(t) of (21) are said to be linearly independent if, for
all t ∈ R the relation c1z1(t)+ c2z2(t) implies that c1 = 0 and c2 = 0. (We have
implicitly assumed that the solutions of a linear system are defined for all real t; this
is indeed the case —see exercise 6.3.)
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If z1(t) and z2(t) are two linearly independent solutions, then the matrix Z(t)
having these vectors as columns, namely

Z(t) = (z1(t) |z2(t))

is called a fundamental matrix solution of (21). By definition, Z(t) is invertible
for all t ∈ R, so we let

z(t) = Z(t)Z(0)−1z0. (22)

We claim that z(t) is the solution of (21) for the initial condition z(0) = z0. Indeed
the right hand side of (22) is a solution, being a linear combination of two solutions.
Furthermore z(0) = Z(0)Z(0)−1z0 = z0. The result follows from the uniqueness of
the solution of the system (21).

Thus the solution space of (21) is two-dimensional, and our task is to find, for
given A, a fundamental matrix solution. The simplest cases are the Jordan canonical
systems. We have three cases:

J = J(1) Z(t) =
(

eλ1t 0
0 eλ2t

)
J = J(2) Z(t) = eλ t

(
1 t
0 1

)
(23)

J = J(3) Z(t) = eαt
(

cos(β t) sin(β t)
−sin(β t) cos(β t)

)
.

The validity of these formulae can be verified by a direct calculation (exercise 6.1).
Note that Z(0) = 1 in each case.

To solve the linear system (21) with initial conditions z(0) = z0, we proceed as
follows. First we compute the eigenvalues and eigenvectors of A, and identify the
Jordan canonical form J of A as described in section 5. Then we compute the matrix
P using theorem 5.2.

From (20), the co-ordinate change z = Pw transforms the differential equation
(21) into

ẇ = P−1APw = Jw (24)

while the initial condition z0 is changed to w0, where

w0 =

(
w0,1
w0,2

)
= P−1z0.

Note that w0,1 and w0,2 are the components of z0 with respect to the basis v1,v2:

z0 = Pw0 = (v1|v2)w0 = w0,1v1 +w0,2v2.

17



Next we solve (24) using formulae (22) and (23), to obtain w = w(t). Finally, we
revert back to the original co-ordinates: z(t) = Pw(t).

Putting everything together, we obtain

z(t) = Pw(t) = PZ(t)w0 = PZ(t)P−1z0.

For instance, for J = J(1) we have, explicitly:

z(t) = w0,1eλ1tv1 +w0,2eλ2tv2

where v1 and v2 are two eigenvectors of A corresponding to the eigenvalues λ1 and
λ2, respectively.

Exercise 6.1. Verify the validity of formulae (23).

Exercise 6.2. (The matrix exponential.) For any square matrix A and t ∈ R, define

eAt = ∑
k>0

1
k!

Ak = 1+At +
1
2!

A2t2 + · · · .

For each of the matrices J in (23), verify that3

eJ t = Z(t)Z(0)−1.

(Comparison with (22) shows that the equation ż = Jz has solution z(t) = eJtz0, just
like in the one-dimensional case!)

Exercise 6.3. Prove that the solution of (21) is defined for all t ∈ R.

Exercise 6.4. Let τ and δ be, respectively, the trace and the determinant of a matrix
A. Explain what happens to the eigenvalues of A if τ is kept fixed while δ varies
in R. Define a one-parameter family Aδ of matrices with fixed trace and varying
determinant, and describe the bifurcations of the corresponding system (21). Do
the same fixing the determinant and varying the trace.

7 Phase plane
On the Cartesian plane R2 we measure distances using the Euclidean norm

‖z‖=
√

x2 + y2

3Use the following result: if two matrices A and B commute, then e(A+B)t = eAteBt
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which satisfies the following properties, for any z,w ∈ R2 and α ∈ R:

‖z‖> 0 and ‖z‖= 0 iff z = (0,0)
‖z+w‖6 ‖z‖+‖w‖
‖αz‖= |α|‖z‖.

The distance between z,w ∈ R2 is defined to be ‖z−w‖.
We consider planar differential equations of the form

ż = v(z) z(0) = z0 (25)

where
z = (x,y), v(z) = (v1(x,y),v2(x,y)),

and v1 and v2 are real-valued functions of class C1. Under this assumption, then, for
any z0 ∈ R2 the solution z = z(t,z0) of the initial value problem (25) exists and is
unique in a suitable time-interval I = I(z0) = (α(z0),β (z0)) containing the origin.

A solution z(t) is periodic if there is a positive real number T such that, for all
t ∈ R we have z(t) = z(t +T ). The smallest such a T is called the period of the
solution. The orbit {z(t) : t ∈ R} is called a periodic (or closed) orbit.

A point z∗ ∈ R2 is an equilibrium point (or a fixed point), if v(z∗) = 0, that is,
if z∗ = (x∗,y∗). This means

x∗ = v1(x∗,y∗) y∗ = v2(x∗,y∗).

Let z∗ and w∗ be distinct equilibria. An orbit is heteroclinic if

lim
t→−∞

z(t) = z∗ lim
t→∞

z(t) = w∗.

If z∗ = w∗, then the orbit is said to be homoclinic.
The matrix

Dv(z) =


∂v1

∂x
(z)

∂v1

∂y
(z)

∂v2

∂x
(z)

∂v2

∂y
(z)

 (26)

is called the Jacobian matrix of v at z. If z∗ is an equilibrium point of (25), then
the ODE

ż = Dv(z∗)z

is called the linearisation of the system (25). The error term in approximating (25)
by its linearisation is O(z2) = (O(x2,y2,xy),O(x2,y2,xy)).
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7.1 Conservative and reversible systems
A real-valued function H : R2→ R is a constant of the motion (or first integral)
of the system (25) if it is constant along any solution, namely if H(z(t)) = H(z(0))
for all t for which the solution is defined. We also require H to be non-trivial, that
is, not constant on any open subset of R2.

For H to be a constant of the motion, the time-derivative of H along the or-
bits must be equal to zero. We can check this condition without knowledge of the
solutions. Indeed let ∇H be the gradient of H. We find:

Ḣ(z) =
∂H
∂x

(z)ẋ+
∂H
∂y

(z)ẏ = ∇H(z) · v(z).

So the time-invariance of H is equivalent to the condition

∇H(z) · v(z) = 0. (27)

If H is a constant of the motion, then the plane is partitioned into level set of the
function H,

{(x,y) ∈ R2 : H(x,y) = const.},
each level set consisting of one or more orbits.

The conservative systems are a prominent example of ODEs with a constant of
the motion. We start with Newton’s law: F = ma = mẍ. Letting y = ẋ, we transform
this second-order ODE into a pair of first-order ODEs:

ẋ = y ẏ =
1
m

F(x).

Let V (x) be defined —up to an additive constant— by the equation F(x) =−dV/dx.
Such a function is called the potential. Then the quantity

E(x,y) =
m
2

y2 +V (x)

called the energy, is a constant of the motion. Indeed, from (27) we have

Ė(x,y) = (−F(x),my) · (y,F(x)/m) = 0.

If V (x) = x2, then the level sets of the energy are ellipses.
A map R : R2→R2 is an involution if R2 = 1. A system of ODEs is reversible

if it is invariant under the transformations

t 7→ −t z 7→ R(z)
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for some involution R.
The map (x,y)→ (x,−y) is an involution. Thus the system of equations

ẋ = v1(x,y) ẏ = v2(x,y)

is reversible whenever v1 is an odd function of y and v2 is an even function of x. All
conservative systems are of this form, and hence are reversible.

Exercise 7.1. Consider the potential

Vλ (x) = λx+ x3.

sketch some level sets of E, for different values of λ . Find an equation for the level
set that separates closed and non-closed orbits.

Exercise 7.2. Let z∗ be an isolated fixed point of a conservative system. Show that
if the energy E has a local minimum at z∗, then the level sets of E near z∗ are closed
curves.

Exercise 7.3. Show that the Jacobian matrix of an involution has determinant ±1.

8 Limit cycles
Let z(t,z0) be the solution of (25) with initial condition z(0) = z0, and assume that
this solution is defined in a time-interval I = I(z0) = (t−(z0), t+(z0)) containing the
origin. The positive orbit γ+(z0), negative orbit γ−(z0) and the orbit γ(z0) of z0
are defined as

γ
+(z0) =

⋃
06t<t+

z(t,z0)

γ
−(z0) =

⋃
t−<t60

z(t,z0) (28)

γ(z0) =
⋃

t−<t<t+

z(t,z0)

(29)

If γ(z0) is periodic, then I = (−∞,∞) and γ+ = γ− = γ is a closed curve (which
reduces to a point if z0 is a fixed point). A non-periodic orbit may approach a fixed
point z∗:

lim
t→t+

z(t,z0) = z∗. (30)
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However, a non-periodic orbit may also approach a limit cycle, which is an iso-
lated periodic orbit, or a set consisting of several orbits. For example, consider the
following systems, expressed in polar co-ordinates (r,θ):

i)
ṙ = r(1− r)
θ̇ = 1

ii)
ṙ = r(1− r)
θ̇ = 1− cos(θ)+(r−1)2.

(31)

All orbits of each system approach the unit circle (apart from the origin). In i) the
unit circle is a periodic orbit; in ii) the unit circle is the union of a fixed point and a
homoclinic orbit.

We now introduce a machinery to characterise this form of convergence. The
main problem to be dealt with is the absence of the limit (30).

A point w is an ω-limit point of the orbit γ(z0) if there is a sequence (t j) of
times such that

lim
j→∞

t j = t+ and lim
j→∞

z(t j,z0) = w. (32)

In other words, w is an ω-limit point if for any neighbourhood U of w there is a
time t∗ = t∗(U) such that z(t∗,z0) ∈U .

The set of all ω-limit points of γ(z0) is called the ω-limit set of γ(z0), denoted
by ω(z0). By reversing the direction of time, and replacing t+ by t−, we obtain the
analogous concept of α-limit set.

The simplest situation occurs when the limit (30) exists. Then, by letting t j = j
and w = z∗ in (32), we find that z∗ ∈ ω(z0). Since there cannot be any other ω-limit
point (see exercises), we have ω(z0) = {z∗}. Thus if z∗ is an attractor, all points z0
in the basin of attraction will have z∗ as their common ω-limit set.

The same holds for all points of a homoclinic orbit, whereas if z0 is hetero-
clinic we have ω(z0) = {z∗} and α(z0) = {w∗}, where z∗ and w∗ are two distinct
equilibria.

Let Γ be a periodic orbit. If z0 ∈ Γ, then α(z0) = ω(z0) = Γ. However, if z0 6∈ Γ,
then it is possible that one of the sets α(z0) and ω(z0) is equal to Γ and the other
isn’t, as in example (31) i). Finally, the possibility exists that ω(z0) = Γ for z0 6∈ Γ

but ω(z0) 6= Γ for z0 ∈ Γ. We saw this in example (31) ii).

Exercise 8.1. Show that if (30) holds, then z∗ is the only element of ω(z0).
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8.1 Lyapounov functions
Let U be an open subset of R2 containing the origin. A real-valued C1 function
V : U → R2 is said to be positive definite on U if

i) V (0,0) = 0
ii) V (x,y)> 0 ∀(x,y) ∈U \{(0,0)}.

A homogeneous quadratic form V (x,y) = ax2+bxy+cy2 is positive definite on
R2 if and only if a > 0 and b2− 4ac < 0. Indeed, suppose V is positive definite.
Since V (x,0) > 0 for x 6= 0, we must have a > 0. If y = y0 6= 0 is fixed, then there
can be no real zero x of V (x,y0) = ax2 + bxy0 + cy2

0. So the discriminant of this
polynomial must be negative: y2

0(b
2− 4ac) < 0, that is b2− 4ac < 0. Sufficiency

follows from similar reasoning —see exercises.
Consider now a systems ż = v(z), where the vector field v has a stationary point

at the origin. A positive-definite function L of an open neighbourhood U of the
origin is said to be a Lyapounov function for the field v if

L̇ (z)6 0 ∀z ∈U \{0}. (33)

If in (33) we have strict inequality, then we speak of a strict Lyapounov function.
The following theorem is due to Lyapounov.

Theorem 8.1. If L is a Lyapounov function for a vector field with a fixed point at
the origin, then the origin is Lyapounov stable. If L is a strict Lyapounov function,
then the origin is asymptotically stable.

PROOF. Let Uε be the open disc of radius ε centred at the origin. Choose ε so that
Uε ⊂U . Since L is continuous, and the boundary of Uε (a circle) is closed and
bounded, then L assume a minimum value m on such a boundary. Furthermore
m > 0, because ε > 0 and L is positive definite.

Now choose δ with 0 < δ 6 ε so that L (x) < m for z ∈Uδ . Such a δ exists
because L is continuous and L (0) = 0. If z0 ∈ Uδ , then for all t > 0 we have
z(t,z0) ∈Uε , because L̇ (z(t)) 6 0 implies L (z(t)) 6L (z(0)). This proves that
the origin is stable. The proof of asymptotic stability in the strict case is left as an
exercise. �

The existence of a strict Lyapounov function implies that there cannot be peri-
odic orbits in U . This is because a strict Lyapounov function is strictly decreasing
along orbits, while along a periodic orbit the value of such a function would have to
be periodic.
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Exercise 8.2. Show that if a > 0 and b2− 4ac < 0, then the quadratic form ax2 +
bxy+ cy2 is positive definite.

Exercise 8.3. Complete the proof of theorem 8.1.

8.2 The Poincarè-Bendixon theorem
The following theorem describes the possible limit sets of a planar system.

Theorem 8.2. Let ż = v(z) be a planar system with a finite number of equilibrium
points. If the orbit γ+(z0) of z0 is bounded, then one of the following is true:

i) The ω-limit set ω(z0) is a single equilibrium point z∗ and z(t,z0)→ z∗ as
t→ ∞.

ii) ω(z0) is a periodic orbit Γ and the orbit γ+(z0) is either equal to Γ, or it spirals
towards Γ on one side of it.

iii) ω(z0) consists of equilibrium points and orbits whose α- and ω-limit sets are
equilibrium points.

The following theorem gives sufficient conditions for case ii).

Theorem 8.3. (Poincarè-Bendixon) Any bounded ω-limit set which contains no
equilibrium points is a periodic orbit.

How can we use this theorem to establish the existence of a limit cycle? We
begin by defining a positively invariant set D as a set which contains the forward
orbit of all its points:

∀z0 ∈D , γ
+(z0)⊂D .

(Such a set is sometimes called a trapping region.) We now attempt to construct
a bounded positively invariant set D which contains no equilibrium point, in the
interior or on the boundary. Then the Poincarè-Bendixon theorem ensures that there
is at least one cycle in D (which could be on the boundary).

We illustrate the above approach with an example:

ẋ = y
ẏ = −x+ y(1− x2−2y2).

(34)

We note that the origin is the only equilibrium point. To determine a positively
invariant bounded region D we consider the function V (x,y) = x2+y2, and compute
its derivative along the orbits of our system:

V̇ (x,y) = ∇V · ż = 2y2(1− x2−2y2).
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We verify that if V (x,y)< 1/2 then V̇ (x,y)> 0 and if V (x,y)> 1 then V̇ (x,y)< 0.
Therefore for any 1/2 < ε < 1, the open annulus

D = {(x,y) ∈ R2 :
1
2
− ε <V (x,y)< 1+ ε}

has the desired properties; furthermore, the origin is not on its boundary. The
Poincarè-Bendixon theorem now implies that there is at least one periodic orbit
in D .
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