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1 Some local analysis

We review some concepts regarding the behaviour of funetionhe vicinity of a
point.

A neighbourhood of a pointx € R is any open intervalcontainingx. In the
mathematics literature the accepted meaning of this teaorisiderably more gen-
eral (an open set containing, but the given definition will suffice for our purpose.

The neighbourhood concept characterises proximity in &isermanner that
does not rely on quantitative information. A property thalds in a neighbourhood
of a point is said to bécal. For instance, the sentence ‘The functibis bounded
in a neighbourhood ofy’ means that there is an open interval contaimggvhose
image undeff is a bounded set. We could express the same idea by sayirnpé¢hat
function f is ‘locally bounded'.

This concept is generalised naturally to higher dimensiangighbourhood of
x € R? is an open disc containing in three dimensions we have an open sphere,
etc.

1.1 The Big-O notation

Let f andg be real functions. We write
f(x) = O(g(x)) as x—0

to mean that there is a const&hsuch that f (x)| < C|g(x)| holds in a neighbour-
hood of the origin, that is, for all sufficiently sma\|.

For example
3

sin(x) = x— % +0(x°)

means that there is a const&such that, for small enougdk|

sin(x) —x+):;—3;

<C‘x5‘.

In fact we can choosg| < 1 andC = 1/5!. (Think about it.)

There is an analogous definition for the case> «, and indeed fox tending
to any real or complex value. Note th@f1) just meansounded in the relevant
domain.

1Aninterval is open if it does not contain its end-points



For example, ag — 0, we have

¥ =0(x) cogx)—1=0(x*)  cogx)+1=0(1),

-1 1
As X — oo, we have
2
> x“+1 1
X = O(x?) v O ()—( arctar{x) = O(1),

The following properties of the big-O notation are usefutamputations (here
f andg are arbitrary real functions artds a constant):

cf(x) = O(f(x)
O(f(x))0(g(x))) = O(f(x)g(x))
O(f(x)) +0(g(x)) = O(f(x)|+[a(x)[)

O(f(¥)g(x) = f(x)O(g(x))
O(f(x)?) = O(f(x)

Let us apply these identities in some examples. Assumd tliat= O(1). Then
Pl — 14 O(f(x)).
As x — 0 andy — 0 we have:
(1+x)Y = 1+ylog(1+x)+O(y*log(1+x)?)

= 1+yx+O(yx®) +O(y*x?)
= 14yx+O(yx?).

Thus
2 -
(14x)) = 1+yx+O(x%) yf!xed
1+ 0O(y) X fixed.

The big-O notation represents a rare instance in mathesnatighich the sym-
bol ‘=" does not mean equal. Indeed from the statements

sinx) =0(x) xX*=0(x) x—0



we cannot deduce that k) = x2 in a neighbourhood of 0. Here the equal sign
really denotes membership: s € O(x), whereO(X) is the set of functions which
are defined in a neighbourhood of the origin and have thedspatgerty. Thus

O(x) = {x,%,sin(x),log(1+x),...}  x—0.

Exercise 1.1.Prove that

14+ 2x+0(x?) = (1+2x)(1+0(x%))  x— 0.

Exercise 1.2.Prove or disprove
1

1. 1_I_X2:1+O(x) x—0
2. cogx)sin(x) = O(x) X — 00
3. cogx)sin(x) = O(x%) X—0
4. cog0(x)) = 1+0(x?) all x

5. O(x4y)=0(%)+0(Y) Xy— o
6. O/ et 0(1/n) n— oo
7. n°M = O(log(n)") n— oo

[Answer: T,T,F, T,T,T,T]

Exercise 1.3.Multiply (log(n) + y+ O(1/n)) by (n+ O(y/n)) and express your
answer inO-notation.
[Answer:nlog(n) + yn+ O(y/nlog(n))]

1.2 Local theorems

Let k be a non-negative integer. A real functifris said to be oflassC* (written
f € C¥) if f is differentiablek times in its domain of definition, and if thieth
derivative is continuous there. Clag8 mean continuous, while cla€® means
that tfkle function has continuous derivatives of all ord€early, if f € C<+1 then
f e C~.



For example the functiofi(x) = |x| is C° (but notCY), f(x) = |x|2is C? (but not
C3), while f(x) = sin(x)? is C™.

If the stated smoothness property hold only in a donthia R, we make this
explicit by writing f € CK(U).

1. TAYLOR’S THEOREM This is the most important theorem in local analysis.

Theorem 1.1. Suppose thaf : U — R is aC™! function defined over an open
intervalU, and leta andx be any two points it). Then there is a poir between
a andx such that

m 1

fx)=Yy —fM@x—a)k+

- e ki f(m+l)(z>(x_a)m+l

(m+1)!
wheref ¥ denotes th&-th derivative off .

2. THE IMPLICIT FUNCTION THEOREM. In what follows you may regard an open
subset ofR? as an open disc.

Theorem 1.2. Let Q C R? be an open set and IBt: Q — R be a differentiable
function with continuous partial derivatives. Moreover(b&),Yo) € Q be such that

oF

Al £0.
9Y | (x.y0)

F(Xo0,Yo0) = ¢,

Then there exist open intervalsV with (xo,Yo) C U xV C Q and a differentiable
functiong such that the two sets

{(xy)€Q:F(xy)=c} and {(x,9(x)):xeU}
agree otJ x V.

The theorem says that, provided t@&t/dy is non-zero atxp, o), then near this
point the level seF (x,y) = ¢ may be expressed as the graph of a smooth function
y =Yy(X) = g(x). The role ofx andy may be interchanged to obtain an analogous
statement for the implicit functior= x(y).

For example, the level s&t(x,y) = x? +y? = ¢? (a circle centred at the origin)
is the graph of a functiop= g(x) as long a®’F /dy = 2y is non-zero, that igy # 0.

At the points(+c,0) two distinct implicit functions coalesce.



2 Flows on the line

LetU C R be an open interval (possibly infinite, or semi-infinite)dadetv:U — R
be a function (called gector field). A solution of the first order ordinary differen-
tial equation

X = V(X) xey!u (1)

wherex = dx/dt, is a differentiable function
x:I—=U
of an open interval C R (possibly infinite, or semi-infinite) such that

dx

S| =) @)

t=1

The valuexy = x(0) is called thenitial condition . The initial timet = O could be
replaced by anyp € R.
Leta be a real number. The solution of the differential equation

X = ax X(0)=x€R

is X(t,Xg) = Xo€®. This function is defined over the entire real line.

2.1 Existence and uniqueness

The following theorem gives conditions under which the sofluof equation (1)
exists and is unique for any choice of initial conditions.

Theorem 2.1. Letv andU be as above, with € C1(U). Then for everyy € U the
following holds:

i) Equation (1) has a solution= X(t) with x(0) = Xo, valid for allt sufficiently
near 0.

ii) This solution is unique, that is, any two solutiot andx® coincide in a
neighbourhood af= 0.

i) If v(xg) = 0, thenx(t) = O; if v(xg) # O, then

xt) dz

= x V(2)

®3)



If v(xo) # 0, then the function = t(x) defined by equation (3) may be inverted
in some neighbourhood of= 0, giving the solutiorx = x(t). Invertibility follows
from the implicit function theorem (see section 1.2) appbie the function

x(t)
F(t,x):t—/xot %

Indeed from the fundamental theorem of Calculus, the dévevaif F with respect
to x is equal to the integrand, and the latter is non-zero by agsam Thus the
expression (3) may be inverted to give a differentiable fiomex = x(t). We see that
solving (1) involves an integration (by separation of valés) and an inversion.

The restrictions appearing in the formulation of the theoege necessary. Thus
the solutionx(t) may not be defined for all real For instance, the system

X = X? X(0) = Xo (4)

has solution
X0

1—xot
Forxg # 0, this function is not defined over the whd@e It is defined in the interval
(—o0,1/Xp) for Xo > 0, and(1/xp, ) for Xp < O.
The differentiability of the vector field is necessary forqureness. For example,
the system

X(t,%o)

X=vX x(0=x x>0
has solution

X(t,%0) = (t-+/50)2/4

However, ifxg = 0, then there is also the solution which is identically zenodil t.
So the solution is not unique.

2.2 Stability

A point x* € U for which v(x*) = 0 is called &ixed point (or equilibrium point )
of the flow.

An equilibrium pointx* is stable (or Lyapounov stable if for every neighbour-
hood ofV of x* there is a neighbourhodd of x* such that all solutiong = x(t)
with x(0) € U remain inV for all times. This means that points all points sufficiently
close tox* remain forever neax*, although they do not necessarily approath



Lyapounov stability iscontinuity in disguise. Indeed, let us consider the one-
parameter family of functions

¢t (%) = X(t, Xo).

From theorem 2.1 we know thghk is defined in a neighbourhodd of x* for all
sufficiently smallt. If the equilibrium pointx* is stable, then all function¢; are
continuous ax*, for any choice of € R.

An equilibrium pointx* (v(x*) = 0) isasymptotically stableif it is stable? and if
there is a neighbourhodd of x* such that, for anyg € U all solutionsx = x(t, xp)
converge tax* ast — «. The equation (4) has the fixed poxit= 0. If a < 0,
thenx(t,xg) — O for any choice of the initial conditiory. In this case asymptotic
stability is a global propertyd = R.

A point may be stable but not asymptotically stable. Foransg, ifv(x) = 0,
then all pointsx* € R are fixed and stable, but not asymptotically stable. A more
meaningful example is given in exercise 2.1.

The pointx* is unstableif there is a neighbourhodd of x* such all solutions
with x(0) € U eventually leavé). In the systenx = x, the origin is unstable. Note
that stable is not the logical negation of unstable, thahese are fixed points which
are neither stable nor unstable, for instance the origihérsystenv(x) = x°.

Consider now an equilibrium poimt for a fieldv, and suppose that=V (xx) #
0. Without loss of generality, we may assume tkiat 0. Taylor’'s theorem gives

v(X) =Ax+g(x)  where g(x)=0O(x?).

SinceA # 0, we choose such that 0< € < |A|. Now g'(x) = O(x) tends to 0, and
so there is a neighbourhottof 0 such that, for alk € U we havelg'(x)| < €, and
hence (by integratiorjp(x)| < £|x|. This implies that the sign of(x) is the same as
that of its linear parf x. The argument above, together with exerciseid.Below,
gives the following result.

Theorem 2.2. Suppose that is aC! function and thak* is an equilibrium point.
If V(x*) < O, thenx* is asymptotically stable; if (x*) > 0, thenx* is unstable.

2Requiring stability is redundant here —see exercisé\-2 but it'll become essential for flows
on the circle, or in higher dimensions.



Exercise 2.1.Consider the differential equation

o if x=0
X=v(x) = x2sin(log(|x|)) if x 0.

Show thatv is of classC! but notC?, and that the origin is stable but not asymptot-
ically stable.

Exercise 2.2.Let x* be an equilibrium point ok = v(X).

i) Prove thatx" is stable if there is a neighbourhodH of x* such that(x —
x*)f(x) < OforallxeU.

ii) Prove thak* is asymptotically stable if there is a neighbourhabdf x* such
that (x —x*) f(x) < O forallx e U \ {x*}.

iii) Show that in the statementabove, the ‘if’ could not be replaced by ‘if and
only if’.

iv) Prove that if all orbits in a neighbourhood xf converge tox*, thenx* is
stable.

3 Bifurcations

We consider a family of vector fields on the line depending smoothly on a real
parameterr:
x=v(x,r)  V:R?>R. (5)

(More generally, the domain afwill be an open domain ifR?.) In the literature
one often finds the notation (x) for v(x,r), which emphasises the subordinate role
of the argument (this is whyr is called gparameter rather than aariable). Note,
in particular, that the co-domain ofis R, not R?, and hence the expression (5)
defines a vector field oR? which is everywhere parallel to theaxis.

We require that the field be a differentiable function of for everyr, so that
the existence and uniqueness theorem of section 2 appliesald&' require that
be a differentiable function af, that is, as the parameter is varied, the vector field
changes smoothly. In symbolg C(R?).

The solution set of the fixed point equatiom(x,r) =0

B ={(r,x) e R? : v(x,r) =0} (6)

8



is called thebifurcation diagram of the fieldv. Take a pointrg,Xo) € 4, repre-
senting a fixed point of the vector fieldfor a particular parameter valug. If the
following condition is satisfied:

M o ™
(Xo,r0)
then the implicit function theorem ensures that agries nearg, the location of
the fixed point is given by a differentiable functigh= x*(r), with xo = X*(rp), The
local functionx*(r) represents aranch of the bifurcation diagram.
From theorem 2.2 we know that fore= rq the stability properties of the point
are determined by the sign of the derivative (7). We now shatthe same is true
for all r sufficiently close tag. We need to verify that for all sufficiently close to

ro we have

ov
> #0 ®)
(x*(r),r)
and the sign of this derivative agrees with the derivativ&’in We have
vl
28 (Xo,r0) ox (x*(ro).ro)

Furthermore botl* andv are continuous functions. It follows that there is a neigh-
bourhooaV of rg such that for alt € V the condition (8) is satisfied, as desired.

We have shown that the flow near a hyperbolic equilibrium fpisimsensitive to
small perturbations of the vector field. So to obtain quinigechanges of behaviour
when a parameter is varied, the spatial derivative of théovdeld must vanish.
Thus we require the simultaneous conditions:

ov

Xo,fo)

V(Xp,rp) =0

A parameter value for which (9) hold is calledtical (or bifurcation) parameter.
In this case the fixed point' is (at least) alouble zeroof v, that is, asx — x* we
have

V(X,ro) = a(x—x )"+ O ((x—x)"1)  a#£0, n>2

At a bifurcation point the implicit function theorem doest mpply. Geometri-
cally this is a point in the bifurcation diagram where sel/branches of the fixed
point function come together. The orderf the zero ofv at x* is given by the
number of fixed points that coalesce at the critical paramete

9



3.1 Types of bifurcations

We consider three types of bifurcations of fixed points, \Whace represented by
the following one-parameter families of differential etaas:

X=r—x (saddle-node) (10)
X=rx—x (transcritical) (11)
X=rx+x (pitchfork) (12)

It is immediate to check that in all cases the bifurcationdibons (9) are satisfied
at(x,r) = (0,0), which is therefore a bifurcation point.

SADDLE-NODE. For the general system (5), a saddle-node bifurcatidm,aj =
(x*,r¢) is defined by the followingransversality conditions, which are clearly
verified by (10): ,

ov o0V
ar | 70 0% (4 ro) 70 (13)
The first condition, together with the implicit function ttvem, implies that, as
varies, the fixed point of (5) draws a curve which is tangenh&liner =r.. The
second condition ensures that the bifurcation curve hasadrgtic tangency with
r =r¢, and locally lies on one side of this line.

With the normal form (10) branching occurs above the biftiocavalue where
two equilibria, one stable and one unstable, are presernle Were are no fixed
points below the bifurcation value. The bifurcation diagrfor the alternative nor-
mal formv(x,r) = r 4+ x? is obtained from that of (10) via a reflection with respect
to the origin in the — x-plane.

X 7rC)

TRANSCRITICAL. We see that the equation (11) has the fixed peiatO for all
parameter values. Any system with such a feature cannotrgagh a saddle-node
bifurcation, since the latter requires that there are nalfpants near the bifurcation
point. This prevents the first transversality condition 18) from being satisfied.
We replace this condition by an alternative requiremenitgclvis satisfied by the
normal form (11)

0%v 0%v

arox| e, 7 ° 2|, 70 (14)

(x*,re)
PITCHFORK. A vector field which is an odd function af namely

V(=X ) = —v(X,r)

10



is said to besymmetric or equivariant. A symmetric system must have a fixed
point at the origin. However, the second condition in (14)reat be satisfied by an
odd function, and so we replace it by the following transagtg conditions

% 3
arox (X*,r¢) 7& 0 ax3 (X*.1c) 7& 0 (15)
which are satisfied by the normal form (12) for both choicesigh.

The sign of the third derivative at bifurcation determineghbthe direction of
bifurcation and the stability properties of all fixed point§ 93v/dx® is negative,
then the branching occurs above the bifurcation value, &/h&o stable and one
unstable fixed points are present, while below the bifuocagioint there is a single
stable equilibrium. In this case we speak a&ugpercritical pitchfork bifurcation.

If the third derivative is positive, then we havesabcritical pitchfork bifurca-
tion. The branching occurs below the bifurcation value (twistable and one stable
equilibria), while above bifurcation there is a single até fixed point.

4 Flows on the circle

We denote the unit circle b§t. To define a vector field o&! we consider functions
v:R — R with are differentiable and72periodic, namely:

i) veCYR)
i) YXeR, v(x+2m) = v(X).

Then for anyx € R andk € Z we havev(x) = v(x+ 2km) and hence/ (x) = V' (x+
2km). Such a function defines a vector field ®h

On the circle we must refine the notion of stability. In sect®2 we introduced
two definitions of stability: Lyapounov stability (all ottisi near a fixed poink*
remain near it for all times) and the stronger asymptotibibta (all orbits near a
fixed point converge to it).

On the circle a new phenomenon emerges. Consider the systein-"cogx)
on St. The fixed pointx* = 0 is not stable (hence not asymptotically stable), yet
all orbits converge to it. We call such a pomttracting —to differentiate it from
asymptotically stable. More precisely, a fixed poxitis attracting if there is a
neighbourhood) of x* such that, for anyg € U all solutionsx = x(t,xg) converge
to x* ast — . We see that an asymptotically stable point is also attrgcbut not
vice-versa.

11



4.1 Periodic functions

We review some methods for constructing periodic functions
The quintessential72periodic functions are the sine and the cosine, which are
C®, and for anyk € N, the functions

cu(x) = cogkx)  s(x) = sin(kx)
have the same properties. Therefore any finite linear coaibimof these functions

W©=%+iww®+mM@ (16)
k=1

whereay, by are arbitrary real numbers, will also have the same pragserti
Powers of sines and cosines are &8cand 2t-periodic. Moreover, these func-
tions are rational linear combinations@fands,. For example:

sif(x) = %—%Qa)

- 3 3

SIT(x) = Zsi(x) — 7s8(%)
siff(x) = g - %cz(x) + %m(x).

It follows that any polynomial irt, andsg will be of the form (16).

A useful device for constructing periodic functions with @egcribed smooth-
ness is to consider the interndad= (— 1, 11 (or any half-open interval of lengthrg
and any functionf : | — R with the property thatf (—m) = f(m) and f'(—m) =
/(). Then weextend f periodically to a functionv defined over the entire real
line, by lettingv(x) = f(X), whereXx is the unique element of the deth x+ 27Z.
(Think about it.) The smoothness witloesn't depends only on the smoothness of
f, but also —crucially— on the behaviour éfat the end-points df.

For example, let us consider th€ function

f:(—mm—R  f(x)=x(m—x2).

We verify thatf (1) = f(—m) =0, andf’(m) = f/(—m) = —2r. However,f” (1) =
—6rmbut f”(— ) = 6. Thus the periodic extensionof f is C* but notC?.

The theory of periodic functions requires considering thetin — . The re-
sulting series is calledourier series and any non-pathological periodic function
will admit such a representation. The questions of convergeind properties of
the sum of a Fourier series lie beyond the scope of this cotise we merely note
that any function which is not of clag®d”, such as the piecewise cubic function
given above, will necessarily be represented by an infirotgriEr series.

12



Exercise 4.1.Define a vector field on the circle which is of cla@%but notC3.

Exercise 4.2.Show that the function in (16) is even (odd, respectively) precisely
if all coefficientsby (ax, respectively) are zero.

Exercise 4.3.Show that nothing is gained by extending the sum (16) to negat
indices.

Exercise 4.4.Compute the coefficients of the Fourier series of the funatigiven
in the example.

5 Some linear algebra

The study of first-order linear ordinary differential eqoat on the plane is an
exercise in linear algebra. In preparation for section 6 ewew some necessary
material.

Two vectorsvy andv, in R? are said to béinearly independentif the equation

Xvi+yo =0

admits only the trivial solutiox =y = 0.
Let A be a 2x 2 real matrix:

ab
A= (c d) a,b,c,d € R. (17)
The quantities
Tr(A) =a+d Det(A) =ad —bc

are called thérace and thedeterminant of A, respectively.

The matrixA is invertible if there is a 2< 2 real matrixA— such thatdhA—1 =
A~1A =1, wherel is the 2x 2 identity matrix. A matrix is invertible if and only if
its determinant is non-zero.

A (real or complex) numbek is called areigenvalueof a matrixA if there is
a (real or complex) non-zero vectesuch thatAv = Av. The vectow is called an
eigenvectorof A corresponding to the eigenvalde The eigenvectors correspond-
ing to a given eigenvalue form a linear space, and two eiggavecorresponding to
distinct eigenvalues are linearly independent. (The caeyehowever, is not true.)

The eigenvalues of a matrk are the roots of the quadratic polynomial

Det(A1l—A) =A2—Tr(A)A +Det(A) =0, (18)

13



called thecharacteristic polynomial of A.
For the purpose of classifying matrices, we introduce tepeeial parametrised
families of matrices, calledordan canonical matrices

JﬂL:(% z) JQL:<3 ;) J@L:(f% g) (19)

WhereA1,A2,A,a,3 € R and # 0. The following theorem explains why Jordan
canonical matrices are important.

Theorem 5.1. Let A be a2 x 2 real matrix. Then there is an invertib?ex 2 real
matrixP and a Jordan canonical matdxsuch that

PlAP =J. (20)

Moreover, the matrice& andJ have the same eigenvalues.

The matrixJ appearing in (20) is called thé&ordan canonical form of the
matrix A. This theorem says that if we change co-ordinates in an appte way,
then any matrix will be transformed into precisely one of tinee Jordan matrices
(29).

The following statements are readily verified:

1. The matrixJV) has two real eigenvalu@s andA,, with corresponding eigen-
vectorse; = () ande; = (9).

2. The matrixJ® has a single real eigenvaldewith eigenvectoe;.

3. The matrixJ® has two complex conjugate eigenvalies= a +if with
eigenvectorg; = ( L).

To determine the Jordan form &f, we compute the eigenvalues Af If they
are real and distinct then the Jordan forrd({8; if they are complex then the Jordan
form is J©. If the eigenvalues are equal, then the Jordan ford¥sif there are
two linearly independent eigenvectors (hence any vectan isigenvector and is
already in Jordan form) anti?) otherwise.

Once we have identified the Jordan form, the following resilidtvs us to com-
pute the matribP of equation (20). In what follows we denote by;|v2) the matrix
whose columns are the column vectersandvs,.

14



Theorem 5.2. LetA, J, andP = (v1|v») be as in theorem 5.1. Then the vecters
andv, are determined as follows:

1. If 3=J3W thenvy, andv; are any two linearly independent eigenvector of
2. If J=J@ thenv, is an eigenvector ok andv, satisfies the equation

(A —)\]I)VZ = V1.

3. If J=JO) thenv; andv, are the real and imaginary part of a complex eigen-
vector ofA.

To see why this theorem works, first note that in all cases thenans ofP =
(v1|v2) are linearly independent, so tHais invertible. We compute:
J=JY: AP = (Avi|Av) = (Arva|Aave) = PIY
J=J@: AP = (Av|AV,) = (Avi|vi+Avy) = PJ?
J=J®: AP = (Avi|Av,) = (avi — Bvo|Bvi + avy) = PI®),
Thus, in each case AP = J.
Exercise 5.1.Using the notation of theorems 5.1 and 5.2, com@ua@dP for the

following matricesA:
0 1 0 1
—4 4 —w?® -2a

5 —
4 -5
wherea andw are real constants (you’ll have to consider their relatiagmtude.)

In each case verify th& 1AP = J.

Exercise 5.2.Prove that any two conjugate matrices, that is, two maticasdJ
related as in equation (20), have the same characteridjinquoial.

Exercise 5.3.Prove that the vectong andv, of theorem 5.2 are linearly indepen-
dent in each case.

6 Linear planar systems

We begin out study of first-order ordinary differential etioas on the plane with
the linear systems:

7— Az 7= (;) A= (Z‘ 3) 1)

15



wherea,b,c,d € R. (In this section, the pointsc R? are represented as column
vectors.) The vector fieldis a linear function of the co-ordinates. Sind@ = 0,
all linear systems have a fixed point at the origin.

The linearity ofZ= Az implies that ifz;(t) andz(t) are solutions of (21) then
so is any linear combination af andz:

Z(t) = c1za(t) +Cc2zo(t)

wherec; andcp are arbitrary real numbers. This is called guperposition prin-
ciple, which says that the solution set of the system (21)risahvector space To
determine its dimension, we must generalise the notiomefli independence.

Two solutionsz; (t) andz(t) of (21) are said to bénearly independentif, for
all t € R the relationcyz;(t) + cozx(t) implies thatc; = 0 andc, = 0. (The alert
reader will have noted that we have implicitly assumed thatsblutions of a linear
system are defined for all real This is indeed the case —see exercises.)

If z1(t) andz(t) are two linearly independent solutions, then the mafr(K)
having these vectors as columns, namely

Z(t) = (z(t) | (1))

is called gundamental matrix solution of (21). By definition Z(t) is invertible for
all't € R. The solution of (21) wittz(0) = z; is expressed in terms of a fundamental
matrix solution as follows:

z2(t) = Z(t)Z(0) 2. (22)

Indeed the right hand side of this equation is a solutiomdpailinear combination
of two solutions. Furthermorg0) = Z(0)Z(0) 1z = z9. The result follows from
the uniqueness of the solution of the system (21).

Thus the solution space of (21) is two-dimensional, and ask ts to find, for
givenA, a fundamental matrix solution. The simplest cases areoittad canonical
systems. We have three cases:

3= Z<t>=(ef)lt efzt)

1= zq) =M (é t1> (23)

« [ CosBt)  sin(By)
3239 2= (Gl doxn)
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The validity of these formulae can be verified by a direct glatton —see exer-
cises. Note thaZ (0) = 1 in each case.

To solve the linear system (21) with initial conditior®) = 7, we proceed as
follows. First we compute the eigenvalues and eigenvedbss and identify the
Jordan canonical formhof A as described in section 5. Then we compute the matrix
P using theorem 5.2.

From (20), the co-ordinate change= Pw transforms the differential equation
(21) into

W= P 1APW = Jw (24)

while the initial conditionz is changed tavg, where
Wo,1 -1
Wo = ~ =P .
o= (vez) =
Note thatwp 1 andwg > are the components af with respect to the basig, vo:

2o = Pwo = (V1|V2)Wo = Wo 1V1 + Wo 2Vo.

Next we solve (24) using formulae (22) and (23), to obtais w(t). Finally, we
revert back to the original co-ordinategt) = Pw(t).
Putting everything together, we obtain

z(t) = Pw(t) = PZ(t)wg = PZ(t)Pz,.
For instance, fod = J® we have, explicitly:
Z(t) = Wo7le/\1tV1 +Wo,262‘2tV2

wherev; andv, are two eigenvectors & corresponding to the eigenvalugsand
A2, respectively.

Exercise 6.1.Verify the validity of formulae (23).
Exercise 6.2.(The matrix exponentiglFor any square matri& andt € R, define

1 1
=3y ZAK= 1 At+ =A%
LK 2l

For each of the matricekin (23), verify that
et=zt)z(0)t

(Comparison with (22) shows that the equatioa Jz has solutiorg(t) = €”z, just
like in the one-dimensional case!)

3Use the following result: if two matrice& andB commute, therA Bt — gAteBt

17



Exercise 6.3.Prove that the solution of (21) is defined for aé R.

Exercise 6.4.Let T andd be, respectively, the trace and the determinant of a matrix
A. Explain what happens to the eigenvaluesiaf 71 is kept fixed whiled varies

in R. Define a one-parameter famiby of matrices with fixed trace and varying
determinant, and describe the bifurcations of the cormedipg system (21). Do
the same fixing the determinant and varying the trace.

7 Phase plane

On the Cartesian plarie? we measure distances using the Euclidean norm:

12| = V/x2+y?
which satisfies the following properties, for any € R? anda € R

IZ|>0 and |z =0 iff z=(0,0)
|24+ w]| < [[Z]| + [|w]]
lazl| = |al]|Z].

The distance betweenw < R? is now defined to bdz—wj.
We consider planar differential equations of the form

1=v2)  20)=2 (25)

where

z=(xy), V(2= (vi(xy),va(x,y)),
andv, andv, are real-valued functions of cla€3. Under this assumption, then, for
any zy € R? the solutionz = z(t, ) of the initial value problem (25) exists and is
unique in a suitable time-intervak= | (z9) = (a(z), B(Z)) containing the origin.

A solution z(t) is periodic if there is a positive real numbér such that, for
allt € R we havez(t) = z(t + T). The smallest such is called theperiod of the
solution. The orbifz(t) : t € R} is called a periodic (or closed) orbit,

A point z* € R? is anequilibrium point , or a fixed point, ifv(z*) = 0, that is, if

Z' = (x*,y"), then
X'=vi(XLY) Y =Ve(ZLY).
Let z* andw* be distinct equilibria. An orbit iieteroclinic if
lim z(t) =2 tIim Z(t) =w".

t——o
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If z* =w*, then the orbit is said to deomoclinic.

The matrix 5 5
Vv Vv
w? 5@
DV@) = | 5y, 6V, (26)

W(Z) d_y(z)
is called theJacobian matrix of v atz If z* is an equilibrium point of (25), then
the ODE
z=Dv(Z")z
is called thdinearisation of the system (25). The error term in approximating (25)
by its linearisation i€)(z%) = (O(X2,y?,xy), O(x%,y,Xy)).

7.1 Conservative and reversible systems

A real-valued functiorH : R? — Ris aconstant of the motion (or first integral)
of the system (25) if it is constant along any solution (nanifeH (z(t)) = H(z(0))
for all t for which the solution is defined). We also require thlabe non-trivial,
that is, not constant on any open subseRéf

For H to be a constant of the motion, the time-derivativeHbfallong the or-
bits must be equal to zero. We can check this condition witkoowledge of the
solutions. Indeed leflH be the gradient ofl. We find:

oM oH

H(z) = W(Z)XJF d—y(z)y: OH(2) - v(2).
So the time-invariance dfl is equivalent to the following condition:
OH(z)-v(z) =0 (27)

If H is a constant of the motion, then the plane is partitioneallmtel set of the
functionH:
{(x,y) € R? : H(x,y) = congt.}

each level set consisting of one or more orbits.

Theconservative systemare a prominent example of ODEs with a constant of
the motion. We start with Newton’s lavt = ma = mX. Lettingy = X, we transform
this second-order equation into a pair of first-order ODESs:

X=Yy
. 1
Y—EF(X)
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LetV (x) be defined —up to an additive constant— by the equdtio) = —dV /dx.
Such a function is called thgotential. Then the quantity

m
E(xY) = 5Y+V(X)
called theenergy, is a constant of the motion. Indeed, from (27) we have

E(x,y) = (—=F(x),my) - (y,F (x)/m) = 0.

If V(x) = x?, then the level sets of the energy are ellipses.
A mapR:R? — R?is aninvolution if R> = 1. A system of ODEs iseversible
if it is invariant under the transformations

t— —t z— R(2)

for some involutiorR.
The map(x,y) — (X,—Y) is an involution. Thus the system of equations

X= V1<X7 y) y = VZ(X7 y)
is reversible wheneves is an odd function of andv, is an even function of. All
conservative systems are of this form, and hence are rbiersi

Exercise 7.1.Consider the potential
Vy (X) = Ax4+C.

sketch some level sets Bf, for different values ofA. Find an equation for the level
set that separates closed and non-closed orbits.

Exercise 7.2.Let z* be an isolated fixed point of a conservative system. Show that
if the energyE has a local minimum &, then the level sets & nearz" are closed
curves.

Exercise 7.3.Show that the Jacobian matrix of an involution has deterntigd.

8 Limit cycles

Let z(t,zp) be the solution of (25) with initial condition(0) = zy, and assume that
this solution is defined in a time-interviak= | (z9) = (t_(29),t+(20)) containing the
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origin. Thepositive orbit y*(z), negative orbit y~(z) and theorbit y(z) of z
are defined as

vi) = | zt )

ot<ty

Vv () = | zt,2) (28)
t_<t<0

i) = | zt2)
t<t<ty

(29)

If y(20) is periodic, therl = (—o, ) andy™ =y~ = yis a closed curve (which
reduces to a point ify is a fixed point). A non-periodic orbit may approach a fixed
pointz*:

lim z(t,z9) = Z". (30)

t—tt

However, a non-periodic orbit may also approackrat cycle, which is an iso-
lated periodic orbit, or a set consisting of several orlfst example, consider the
following systems, expressed in polar co-ordingte8):

: = r(l—r) . = r(l—r)
DR g 1—cog8)+ (r — 1) (31)
All orbits of each system approach the unit circle (apannftbe origin). Ini) the
unit circle is a periodic orbit; i) the unit circle is the union of a fixed point and a
homoclinic orbit.

We now introduce a machinery to characterise this form oveayence. The
main problem to be dealt with is the absence of the limit (30).

A point w is an w-limit point of the orbity(zp) if there is a sequencg;) of
times such that

jlirrlotj =t and J_Iirpoz(tj,zo) =W (32)
In other wordsw is an w-limit point if for any neighbourhoodl) of w there is a
timet* =t*(U) such thatz(t*,z) € U.

The set of allw-limit points of y(zp) is called thew-limit set of y(zy), denoted
by w(zp). By reversing the direction of time, and replacingby t_, we obtain the
analogous concept @i-limit set.

The simplest situation occurs when the limit (30) existse oy lettingtj = j
andw = z" in (32), we find thatz* € w(zp). Since there cannot be any othiedimit
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point (see exercises), we hawgzy) = {z*}. Thus ifZ" is an attractor, all pointg
in the basin of attraction will hav# as their commoro-limit set.

The same holds for all points of a homoclinic orbit, wherdag iis hetero-
clinic we havew(z) = {z'} anda(zp) = {w*}, wherez" andw* are two distinct
equilibria.

Letl" be a periodic orbit. Iy € I', thena (z9) = w(Zp) =T'. However, ifzp £ T,
then it is possible that one of the set§zy) and w(z) is equal tol" and the other
isn’t, as in example (31i)). Finally, the possibility exists thab(zg) =T for zp ¢ I
but w(zy) # T for zo € I'. We saw this in example (31i).

Exercise 8.1.Show that if (30) holds, ther is the only element ofv(zp).

8.1 Lyapounov functions

Let U be an open subset & containing the origin. A real-value@! function
V : U — R? s said to bepositive definiteonU if

i) V(0,00=0
i) V(xy >0 V(xy e€U\{(0,0)}.

A homogeneous quadratic fonh(x,y) = ax? + bxy + cy? is positive definite on
R? if and only if a > 0 andb® — 4ac < 0. Indeed, suppos¢ is positive definite.
SinceV (x,0) > 0 for x # 0, we must hava > 0. If y =yp # 0 is fixed, then there
can be no real zerm of V(X,yp) = ax® + bxyo + cy%. So the discriminant of this
polynomial must be negative3(b? — 4ac) < 0, that isb? — 4ac < 0. Sufficiency
follows from similar reasoning —see exercises.

Consider now a systenzs= v(z), where the vector field has a stationary point
at the origin. A positive-definite functior’ of an open neighbourhodd of the
origin is said to be &yapounov function for the fieldv if

ZL(2)<0  vzeU\{0}. (33)
If in (33) we have strict inequality, then we speak dftact Lyapounov function.
The following theorem is due to Lyapounov.

Theorem 8.1. If .Z is a Lyapounov function for a vector field with a fixed point at
the origin, then the origin is Lyapounov stable 4fis a strict Lyapounov function,
then the origin is asymptotically stable.

PROOF LetU, be the open disc of radiuscentred at the origin. Choogeso that
Ue C U. Since.Z is continuous, and the boundary df (a circle) is closed and
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bounded, thenZ assume a minimum valua on such a boundary. Furthermore
m > 0, because > 0 and.Z is positive definite.

Now choosed with 0 < & < € so thatZ(x) < mfor ze€ Us. Such ad exists
because? is continuous and?’(0) = 0. If zp € U;, then for allt > 0 we have
Z(t,2p) € Ug, becauseZ(z(t)) < 0 implies Z(z(t)) < -£(z(0)). This proves that
the origin is stable. The proof of asymptotic stability irethtrict case is left as an
exercise. O

The existence of a strict Lyapounov function implies thatréhcannot be peri-
odic orbits inU. This is because a strict Lyapounov function is strictlyréasing
along orbits, while along a periodic orbit the value of sudbrection would have to
be periodic.

Exercise 8.2.Show that ifa > 0 andb? — 4ac < 0, then the quadratic formxZ +
bxy + cy? is positive definite.
Exercise 8.3.Complete the proof of theorem 1.

8.2 The Poincae-Bendixon theorem

The following theorem describes the possible limit sets piiaaar system.

Theorem 8.2. Let z= v(z) be a planar system with a finite number of equilibrium
points. If the orbity* (zy) of z is bounded, then one of the following is true:

i) The w-limit set w(zy) is a single equilibrium point* andz(t,z)) — z* as
t — oo,

i) w(zo) is a periodic orbif and the orbil/* (zy) is either equal t, or it spirals
towardsl™ on one side of it.

i) w(zp) consists of equilibrium points and orbits whaseandw-limit sets are
equilibrium points.

The following theorem gives sufficient conditions for cége

Theorem 8.3. (Poincae-Bendixon)Any boundedw-limit set which contains no
equilibrium points is a periodic orbit.

How can we use this theorem to establish the existence ofiadyule? We
begin by defining gositively invariant set & as a set which contains the forward
orbit of all its points:

V2o € 2, y'(20)C 2.
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(Such a set is sometimes calledrapping region.) We now attempt to construct
a bounded positively invariant s&t which contains no equilibrium point, in the
interior or on the boundary. Then the Poire@endixon theorem ensures that there
is at least one cycle ity (which could be on the boundary).

We illustrate the above approach with an example:

X =y
J = x+yl-x2-2). (34)

We note that the origin is the only equilibrium point. To deténe a positively
invariant bounded regio® we consider the functioN (x,y) = (x> +y?)/2, and
compute its derivative along the orbits of our system:

V(x,y)=0OV-z=y*(1— x> —2y?).

We verify that ifx? +y? < 1/2 thenV (x,y) > 0 and ifx? +y? > 1 thenV (x,y) < 0.
Therefore the annulus

1
7={(xy) €R®: 5 <X+y’ <1}
has the desired properties; furthermore, the origin is moit® boundary. The

Poincae-Bendixon theorem now implies that there is at least oneogieriorbit
in 2.
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