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1 Some local analysis

We review some concepts regarding the behaviour of functions in the vicinity of a
point.

A neighbourhood of a pointx ∈ R is any open interval1 containingx. In the
mathematics literature the accepted meaning of this term isconsiderably more gen-
eral (an open set containingx), but the given definition will suffice for our purpose.

The neighbourhood concept characterises proximity in a concise manner that
does not rely on quantitative information. A property that holds in a neighbourhood
of a point is said to belocal. For instance, the sentence ‘The functionf is bounded
in a neighbourhood ofx0’ means that there is an open interval containingx0 whose
image underf is a bounded set. We could express the same idea by saying thatthe
function f is ‘locally bounded’.

This concept is generalised naturally to higher dimensions: a neighbourhood of
x ∈ R

2 is an open disc containingx; in three dimensions we have an open sphere,
etc.

1.1 The Big-O notation

Let f andg be real functions. We write

f (x) = O(g(x)) as x → 0

to mean that there is a constantC such that| f (x)| < C|g(x)| holds in a neighbour-
hood of the origin, that is, for all sufficiently small|x|.

For example

sin(x) = x− x3

3!
+O(x5)

means that there is a constantC such that, for small enough|x|
∣

∣

∣

∣

sin(x)− x+
x3

3!

∣

∣

∣

∣

< C
∣

∣

∣
x5

∣

∣

∣
.

In fact we can choose|x| < 1 andC = 1/5!. (Think about it.)
There is an analogous definition for the casex → ∞, and indeed forx tending

to any real or complex value. Note thatO(1) just meansbounded in the relevant
domain.

1An interval is open if it does not contain its end-points
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For example, asx → 0, we have

x2 = O(x) cos(x)−1 = O(x2) cos(x)+1 = O(1),

ex −1
x

= 1+O(x)
1

1− x
= 1+ x+O(x2).

As x → ∞, we have

x = O(x2)
x2 +1

x3 = O

(

1
x

)

arctan(x) = O(1),

x log(x) = O(x2) log(x)6 = O(
√

x).

The following properties of the big-O notation are useful incomputations (here
f andg are arbitrary real functions andc is a constant):

c f (x) = O( f (x))

O( f (x))O(g(x))) = O( f (x)g(x))

O( f (x))+O(g(x)) = O(| f (x)|+ |g(x)|)
O( f (x)g(x)) = f (x)O(g(x))

O( f (x)2) = O( f (x))2.

Let us apply these identities in some examples. Assume thatf (x) = O(1). Then

eO( f (x)) = 1+O( f (x)).

As x → 0 andy → 0 we have:

(1+ x)y = 1+ y log(1+ x)+O(y2 log(1+ x)2)

= 1+ yx+O(yx2)+O(y2x2)

= 1+ yx+O(yx2).

Thus

(1+ x)y =

{

1+ yx+O(x2) y fixed

1+O(y) x fixed.

The big-O notation represents a rare instance in mathematics in which the sym-
bol ‘=’ does not mean equal. Indeed from the statements

sin(x) = O(x) x2 = O(x) x → 0
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we cannot deduce that sin(x) = x2 in a neighbourhood of 0. Here the equal sign
really denotes membership: sin(x) ∈ O(x), whereO(x) is the set of functions which
are defined in a neighbourhood of the origin and have the stated property. Thus

O(x) =
{

x,x2,sin(x), log(1+ x), . . .
}

x → 0.

Exercise 1.1.Prove that

1+2x+O(x2) = (1+2x)(1+O(x2)) x → 0.

Exercise 1.2.Prove or disprove

1.
1

1+ x2 = 1+O(x) x → 0

2. cos(x)sin(x) = O(x2) x → ∞

3. cos(x)sin(x) = O(x2) x → 0

4. cos(O(x)) = 1+O(x2) all x

5. O(x+ y) = O(x2)+O(y2) x,y → ∞

6. e(1+O(1/n))2
= e+O(1/n) n → ∞

7. nlog(n) = O(log(n)n) n → ∞

[Answer:T,T,F,T,T,T,T]

Exercise 1.3.Multiply (log(n) + γ + O(1/n)) by (n + O(
√

n)) and express your
answer inO-notation.
[Answer:n log(n)+ γn+O(

√
n log(n))]

1.2 Local theorems

Let k be a non-negative integer. A real functionf is said to be ofclassCk (written
f ∈ Ck) if f is differentiablek times in its domain of definition, and if thek-th
derivative is continuous there. ClassC0 mean continuous, while classC∞ means
that the function has continuous derivatives of all orders.Clearly, if f ∈Ck+1 then
f ∈Ck.
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For example the functionf (x) = |x| isC0 (but notC1), f (x) = |x|3 isC2 (but not
C3), while f (x) = sin(x)2 is C∞.

If the stated smoothness property hold only in a domainU ⊂ R, we make this
explicit by writing f ∈Ck(U).

1. TAYLOR ’ S THEOREM. This is the most important theorem in local analysis.

Theorem 1.1.Suppose thatf : U → R is a Cm+1 function defined over an open
intervalU , and leta andx be any two points inU . Then there is a pointζ between
a andx such that

f (x) =
m

∑
k=0

1
k!

f (k)(a)(x−a)k +
1

(m+1)!
f (m+1)(ζ )(x−a)m+1

where f (k) denotes thek-th derivative off .

2. THE IMPLICIT FUNCTION THEOREM. In what follows you may regard an open
subset ofR2 as an open disc.

Theorem 1.2.Let Ω ⊂ R
2 be an open set and letF : Ω → R be a differentiable

function with continuous partial derivatives. Moreover let (x0,y0) ∈ Ω be such that

F(x0,y0) = c,
∂F
∂y

∣

∣

∣

∣

(x0,y0)

6= 0.

Then there exist open intervalsU,V with (x0,y0) ⊂U ×V ⊂ Ω and a differentiable
functiong such that the two sets

{(x,y) ∈ Ω : F(x,y) = c} and {(x,g(x)) : x ∈U}

agree onU ×V .

The theorem says that, provided that∂F/∂y is non-zero at(x0,y0), then near this
point the level setF(x,y) = c may be expressed as the graph of a smooth function
y = y(x) = g(x). The role ofx andy may be interchanged to obtain an analogous
statement for the implicit functionx = x(y).

For example, the level setF(x,y) = x2 + y2 = c2 (a circle centred at the origin)
is the graph of a functiony = g(x) as long as∂F/∂y = 2y is non-zero, that is,y 6= 0.
At the points(±c,0) two distinct implicit functions coalesce.
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2 Flows on the line

LetU ⊂R be an open interval (possibly infinite, or semi-infinite), and letv : U →R

be a function (called avector field). A solution of the first order ordinary differen-
tial equation

ẋ = v(x) x ∈U (1)

where ˙x = dx/dt, is a differentiable function

x : I →U

of an open intervalI ⊂ R (possibly infinite, or semi-infinite) such that

dx
dt

∣

∣

∣

∣

t=τ
= v(x(τ)) (2)

The valuex0 = x(0) is called theinitial condition . The initial timet = 0 could be
replaced by anyt0 ∈ R.

Let a be a real number. The solution of the differential equation

ẋ = ax x(0) = x0 ∈ R

is x(t,x0) = x0eat . This function is defined over the entire real line.

2.1 Existence and uniqueness

The following theorem gives conditions under which the solution of equation (1)
exists and is unique for any choice of initial conditions.

Theorem 2.1.Let v andU be as above, withv ∈C1(U). Then for everyx0 ∈U the
following holds:

i) Equation (1) has a solutionx = x(t) with x(0) = x0, valid for all t sufficiently
near 0.

ii) This solution is unique, that is, any two solutionsx(1) andx(2) coincide in a
neighbourhood oft = 0.

iii) If v(x0) = 0, thenx(t) ≡ 0; if v(x0) 6= 0, then

t =
∫ x(t)

x0

dz
v(z)

. (3)
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If v(x0) 6= 0, then the functiont = t(x) defined by equation (3) may be inverted
in some neighbourhood oft = 0, giving the solutionx = x(t). Invertibility follows
from the implicit function theorem (see section 1.2) applied to the function

F(t,x) = t −
∫ x(t)

x0

dz
v(z)

.

Indeed from the fundamental theorem of Calculus, the derivative of F with respect
to x is equal to the integrand, and the latter is non-zero by assumption. Thus the
expression (3) may be inverted to give a differentiable function x = x(t). We see that
solving (1) involves an integration (by separation of variables) and an inversion.

The restrictions appearing in the formulation of the theorem are necessary. Thus
the solutionx(t) may not be defined for all realt. For instance, the system

ẋ = x2 x(0) = x0 (4)

has solution
x(t,x0) =

x0

1− x0t
.

Forx0 6= 0, this function is not defined over the wholeR. It is defined in the interval
(−∞,1/x0) for x0 > 0, and(1/x0,∞) for x0 < 0.

The differentiability of the vector field is necessary for uniqueness. For example,
the system

ẋ =
√

x x(0) = x0 x > 0

has solution
x(t,x0) = (t +

√
x0)

2/4.

However, ifx0 = 0, then there is also the solution which is identically zero for all t.
So the solution is not unique.

2.2 Stability

A point x∗ ∈ U for which v(x∗) = 0 is called afixed point (or equilibrium point )
of the flow.

An equilibrium pointx∗ is stable(or Lyapounov stable) if for every neighbour-
hood ofV of x∗ there is a neighbourhoodU of x∗ such that all solutionsx = x(t)
with x(0)∈U remain inV for all times. This means that points all points sufficiently
close tox∗ remain forever nearx∗, although they do not necessarily approachx∗.
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Lyapounov stability iscontinuity in disguise. Indeed, let us consider the one-
parameter family of functions

ϕt(x0) = x(t,x0).

From theorem 2.1 we know thatϕt is defined in a neighbourhoodU of x∗ for all
sufficiently smallt. If the equilibrium pointx∗ is stable, then all functionsϕt are
continuous atx∗, for any choice oft ∈ R.

An equilibrium pointx∗ (v(x∗) = 0) isasymptotically stableif it is stable2 and if
there is a neighbourhoodU of x∗ such that, for anyx0 ∈U all solutionsx = x(t,x0)
converge tox∗ as t → ∞. The equation (4) has the fixed pointx∗ = 0. If a < 0,
thenx(t,x0) → 0 for any choice of the initial conditionx0. In this case asymptotic
stability is a global property:U = R.

A point may be stable but not asymptotically stable. For instance, ifv(x) = 0,
then all pointsx∗ ∈ R are fixed and stable, but not asymptotically stable. A more
meaningful example is given in exercise 2.1.

The pointx∗ is unstable if there is a neighbourhoodU of x∗ such all solutions
with x(0) ∈U eventually leaveU . In the system ˙x = x, the origin is unstable. Note
that stable is not the logical negation of unstable, that is,there are fixed points which
are neither stable nor unstable, for instance the origin in the systemv(x) = x2.

Consider now an equilibrium pointx∗ for a fieldv, and suppose thatλ = v′(x∗) 6=
0. Without loss of generality, we may assume thatx∗ = 0. Taylor’s theorem gives

v(x) = λx+g(x) where g(x) = O(x2).

Sinceλ 6= 0, we chooseε such that 0< ε < |λ |. Now g′(x) = O(x) tends to 0, and
so there is a neighbourhoodU of 0 such that, for allx ∈U we have|g′(x)| < ε, and
hence (by integration)|g(x)|< ε|x|. This implies that the sign ofv(x) is the same as
that of its linear partλx. The argument above, together with exercise 2.2ii) below,
gives the following result.

Theorem 2.2.Suppose thatv is aC1 function and thatx∗ is an equilibrium point.
If v′(x∗) < 0, thenx∗ is asymptotically stable; ifv′(x∗) > 0, thenx∗ is unstable.

2Requiring stability is redundant here —see exercise 2.2iv)— but it’ll become essential for flows
on the circle, or in higher dimensions.
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Exercise 2.1.Consider the differential equation

ẋ = v(x) =

{

0 if x = 0

x2sin(log(|x|)) if x 6= 0.

Show thatv is of classC1 but notC2, and that the origin is stable but not asymptot-
ically stable.

Exercise 2.2.Let x∗ be an equilibrium point of ˙x = v(x).

i) Prove thatx∗ is stable if there is a neighbourhoodU of x∗ such that(x −
x∗) f (x) 6 0 for all x ∈U .

ii) Prove thatx∗ is asymptotically stable if there is a neighbourhoodU of x∗ such
that(x− x∗) f (x) < 0 for all x ∈U \{x∗}.

iii) Show that in the statementi) above, the ‘if’ could not be replaced by ‘if and
only if’.

iv) Prove that if all orbits in a neighbourhood ofx∗ converge tox∗, thenx∗ is
stable.

3 Bifurcations

We consider a familyv of vector fields on the line depending smoothly on a real
parameter r:

ẋ = v(x,r) v : R
2 → R. (5)

(More generally, the domain ofv will be an open domain inR2.) In the literature
one often finds the notationvr(x) for v(x,r), which emphasises the subordinate role
of the argumentr (this is whyr is called aparameter rather than avariable). Note,
in particular, that the co-domain ofv is R, not R

2, and hence the expression (5)
defines a vector field onR2 which is everywhere parallel to thex-axis.

We require that the fieldv be a differentiable function ofx for everyr, so that
the existence and uniqueness theorem of section 2 applies. We also require thatv
be a differentiable function ofr, that is, as the parameter is varied, the vector field
changes smoothly. In symbols:v ∈C1(R2).

The solution setB of the fixed point equationv(x,r) = 0

B = {(r,x) ∈ R
2 : v(x,r) = 0} (6)
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is called thebifurcation diagram of the fieldv. Take a point(r0,x0) ∈ B, repre-
senting a fixed point of the vector fieldv for a particular parameter valuer0. If the
following condition is satisfied:

∂v
∂x

∣

∣

∣

∣

(x0,r0)

6= 0 (7)

then the implicit function theorem ensures that asr varies nearr0, the location of
the fixed point is given by a differentiable functionx∗ = x∗(r), with x0 = x∗(r0), The
local functionx∗(r) represents abranch of the bifurcation diagram.

From theorem 2.2 we know that forr = r0 the stability properties of the pointx∗

are determined by the sign of the derivative (7). We now show that the same is true
for all r sufficiently close tor0. We need to verify that for allr sufficiently close to
r0 we have

∂v
∂x

∣

∣

∣

∣

(x∗(r),r)
6= 0 (8)

and the sign of this derivative agrees with the derivative in(7). We have

∂v
∂x

∣

∣

∣

∣

(x0,r0)

=
∂v
∂x

∣

∣

∣

∣

(x∗(r0),r0)

6= 0.

Furthermore bothx∗ andv are continuous functions. It follows that there is a neigh-
bourhoodV of r0 such that for allr ∈V the condition (8) is satisfied, as desired.

We have shown that the flow near a hyperbolic equilibrium point is insensitive to
small perturbations of the vector field. So to obtain qualitative changes of behaviour
when a parameter is varied, the spatial derivative of the vector field must vanish.
Thus we require the simultaneous conditions:

v(x0,r0) = 0
∂v
∂x

∣

∣

∣

∣

(x0,r0)

= 0. (9)

A parameter value for which (9) hold is called acritical (or bifurcation ) parameter.
In this case the fixed pointx∗ is (at least) adouble zeroof v, that is, asx → x∗ we
have

v(x,r0) = a(x− x∗)n +O
(

(x− x∗)n+1) a 6= 0, n > 2.

At a bifurcation point the implicit function theorem does not apply. Geometri-
cally this is a point in the bifurcation diagram where several branches of the fixed
point function come together. The ordern of the zero ofv at x∗ is given by the
number of fixed points that coalesce at the critical parameter.
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3.1 Types of bifurcations

We consider three types of bifurcations of fixed points, which are represented by
the following one-parameter families of differential equations:

ẋ = r− x2 (saddle-node) (10)

ẋ = rx− x2 (transcritical) (11)

ẋ = rx± x3 (pitchfork) (12)

It is immediate to check that in all cases the bifurcation conditions (9) are satisfied
at (x,r) = (0,0), which is therefore a bifurcation point.

SADDLE-NODE. For the general system (5), a saddle-node bifurcation at(x,r) =
(x∗,rc) is defined by the followingtransversality conditions, which are clearly
verified by (10):

∂v
∂ r

∣

∣

∣

∣

(x∗,rc)

6= 0
∂ 2v
∂x2

∣

∣

∣

∣

(x∗,rc)

6= 0. (13)

The first condition, together with the implicit function theorem, implies that, asr
varies, the fixed point of (5) draws a curve which is tangent tothe liner = rc. The
second condition ensures that the bifurcation curve has a quadratic tangency with
r = rc, and locally lies on one side of this line.

With the normal form (10) branching occurs above the bifurcation value where
two equilibria, one stable and one unstable, are present, while there are no fixed
points below the bifurcation value. The bifurcation diagram for the alternative nor-
mal formv(x,r) = r + x2 is obtained from that of (10) via a reflection with respect
to the origin in ther− x-plane.

TRANSCRITICAL. We see that the equation (11) has the fixed pointx = 0 for all
parameter values. Any system with such a feature cannot go through a saddle-node
bifurcation, since the latter requires that there are no fixed points near the bifurcation
point. This prevents the first transversality condition in (13) from being satisfied.
We replace this condition by an alternative requirement, which is satisfied by the
normal form (11)

∂ 2v
∂ r∂x

∣

∣

∣

∣

(x∗,rc)

6= 0
∂ 2v
∂x2

∣

∣

∣

∣

(x∗,rc)

6= 0. (14)

PITCHFORK. A vector field which is an odd function ofx, namely

v(−x,r) = −v(x,r)
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is said to besymmetric or equivariant. A symmetric system must have a fixed
point at the origin. However, the second condition in (14) cannot be satisfied by an
odd function, and so we replace it by the following transversality conditions

∂ 2v
∂ r∂x

∣

∣

∣

∣

(x∗,rc)

6= 0
∂ 3v
∂x3

∣

∣

∣

∣

(x∗,rc)

6= 0 (15)

which are satisfied by the normal form (12) for both choices ofsign.
The sign of the third derivative at bifurcation determines both the direction of

bifurcation and the stability properties of all fixed points. If ∂ 3v/∂x3 is negative,
then the branching occurs above the bifurcation value, where two stable and one
unstable fixed points are present, while below the bifurcation point there is a single
stable equilibrium. In this case we speak of asupercritical pitchfork bifurcation.

If the third derivative is positive, then we have asubcritical pitchfork bifurca-
tion. The branching occurs below the bifurcation value (twounstable and one stable
equilibria), while above bifurcation there is a single unstable fixed point.

4 Flows on the circle

We denote the unit circle byS1. To define a vector field onS1 we consider functions
v : R → R with are differentiable and 2π-periodic, namely:

i) v ∈C1(R)

ii) ∀x ∈ R, v(x+2π) = v(x).

Then for anyx ∈ R andk ∈ Z we havev(x) = v(x +2kπ) and hencev′(x) = v′(x +
2kπ). Such a function defines a vector field onS

1.
On the circle we must refine the notion of stability. In section 2.2 we introduced

two definitions of stability: Lyapounov stability (all orbits near a fixed pointx∗

remain near it for all times) and the stronger asymptotic stability (all orbits near a
fixed point converge to it).

On the circle a new phenomenon emerges. Consider the system ˙x = 1−cos(x)
on S

1. The fixed pointx∗ = 0 is not stable (hence not asymptotically stable), yet
all orbits converge to it. We call such a pointattracting —to differentiate it from
asymptotically stable. More precisely, a fixed pointx∗ is attracting if there is a
neighbourhoodU of x∗ such that, for anyx0 ∈U all solutionsx = x(t,x0) converge
to x∗ ast → ∞. We see that an asymptotically stable point is also attracting, but not
vice-versa.
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4.1 Periodic functions

We review some methods for constructing periodic functions.
The quintessential 2π-periodic functions are the sine and the cosine, which are

C∞, and for anyk ∈ N, the functions

ck(x) = cos(kx) sk(x) = sin(kx)

have the same properties. Therefore any finite linear combination of these functions

v(x) = a0 +
n

∑
k=1

akck(x)+bksk(x) (16)

whereak,bk are arbitrary real numbers, will also have the same properties.
Powers of sines and cosines are alsoC∞ and 2π-periodic. Moreover, these func-

tions are rational linear combinations ofck andsk. For example:

sin2(x) =
1
2
− 1

2
c2(x)

sin3(x) =
3
4

s1(x)−
3
4

s3(x)

sin4(x) =
3
8
− 1

2
c2(x)+

1
8

c4(x).

It follows that any polynomial inck andsk will be of the form (16).
A useful device for constructing periodic functions with a prescribed smooth-

ness is to consider the intervalI = (−π,π] (or any half-open interval of length 2π)
and any functionf : I → R with the property thatf (−π) = f (π) and f ′(−π) =
f ′(π). Then weextend f periodically to a functionv defined over the entire real
line, by lettingv(x) = f (x), wherex is the unique element of the setI ∩ x + 2πZ.
(Think about it.) The smoothness ofv doesn’t depends only on the smoothness of
f , but also —crucially— on the behaviour off at the end-points ofI.

For example, let us consider theC∞ function

f : (−π,π] → R f (x) = x(π2− x2).

We verify thatf (π) = f (−π) = 0, andf ′(π) = f ′(−π) =−2π2. However,f ′′(π) =
−6π but f ′′(−π) = 6π. Thus the periodic extensionv of f is C1 but notC2.

The theory of periodic functions requires considering the limit n → ∞. The re-
sulting series is called aFourier series, and any non-pathological periodic function
will admit such a representation. The questions of convergence and properties of
the sum of a Fourier series lie beyond the scope of this course. Here we merely note
that any function which is not of classC∞, such as the piecewise cubic function
given above, will necessarily be represented by an infinite Fourier series.
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Exercise 4.1.Define a vector field on the circle which is of classC2 but notC3.

Exercise 4.2.Show that the functionv in (16) is even (odd, respectively) precisely
if all coefficientsbk (ak, respectively) are zero.

Exercise 4.3.Show that nothing is gained by extending the sum (16) to negative
indices.

Exercise 4.4.Compute the coefficients of the Fourier series of the functionv given
in the example.

5 Some linear algebra

The study of first-order linear ordinary differential equations on the plane is an
exercise in linear algebra. In preparation for section 6 we review some necessary
material.

Two vectorsv1 andv2 in R
2 are said to belinearly independent if the equation

xv1 + yv2 = 0

admits only the trivial solutionx = y = 0.
Let A be a 2×2 real matrix:

A =

(

a b
c d

)

a,b,c,d ∈ R. (17)

The quantities
Tr(A) = a+d Det(A) = ad −bc

are called thetrace and thedeterminant of A, respectively.
The matrixA is invertible if there is a 2×2 real matrixA−1 such thatAA−1 =

A−1A = 1, where1 is the 2×2 identity matrix. A matrix is invertible if and only if
its determinant is non-zero.

A (real or complex) numberλ is called aneigenvalueof a matrixA if there is
a (real or complex) non-zero vectorv such thatAv = λv. The vectorv is called an
eigenvectorof A corresponding to the eigenvalueλ . The eigenvectors correspond-
ing to a given eigenvalue form a linear space, and two eigenvectors corresponding to
distinct eigenvalues are linearly independent. (The converse, however, is not true.)

The eigenvalues of a matrixA are the roots of the quadratic polynomial

Det(λ1−A) = λ 2−Tr(A)λ +Det(A) = 0, (18)
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called thecharacteristic polynomial of A.
For the purpose of classifying matrices, we introduce threespecial parametrised

families of matrices, calledJordan canonical matrices:

J(1) =

(

λ1 0
0 λ2

)

J(2) =

(

λ 1
0 λ

)

J(3) =

(

α β
−β α

)

(19)

Whereλ1,λ2,λ ,α,β ∈ R andβ 6= 0. The following theorem explains why Jordan
canonical matrices are important.

Theorem 5.1.Let A be a2×2 real matrix. Then there is an invertible2×2 real
matrix P and a Jordan canonical matrixJ such that

P−1AP = J. (20)

Moreover, the matricesA andJ have the same eigenvalues.
The matrixJ appearing in (20) is called theJordan canonical form of the

matrix A. This theorem says that if we change co-ordinates in an appropriate way,
then any matrix will be transformed into precisely one of thethree Jordan matrices
(19).

The following statements are readily verified:

1. The matrixJ(1) has two real eigenvaluesλ1 andλ2, with corresponding eigen-
vectorse1 =

(

1
0

)

ande2 =
(

0
1

)

.

2. The matrixJ(2) has a single real eigenvalueλ with eigenvectore1.

3. The matrixJ(3) has two complex conjugate eigenvaluesλ± = α ± iβ with
eigenvectorse± =

(

1
±i

)

.

To determine the Jordan form ofA, we compute the eigenvalues ofA. If they
are real and distinct then the Jordan form isJ(1); if they are complex then the Jordan
form is J(3). If the eigenvalues are equal, then the Jordan form isJ(1) if there are
two linearly independent eigenvectors (hence any vector isan eigenvector andA is
already in Jordan form) andJ(2) otherwise.

Once we have identified the Jordan form, the following resultallows us to com-
pute the matrixP of equation (20). In what follows we denote by(v1|v2) the matrix
whose columns are the column vectorsv1 andv2.
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Theorem 5.2.Let A, J, andP = (v1|v2) be as in theorem 5.1. Then the vectorsv1

andv2 are determined as follows:

1. If J = J(1) thenv1 andv2 are any two linearly independent eigenvectors ofA.

2. If J = J(2) thenv1 is an eigenvector ofA andv2 satisfies the equation

(A−λ1)v2 = v1.

3. If J = J(3) thenv1 andv2 are the real and imaginary part of a complex eigen-
vector ofA.

To see why this theorem works, first note that in all cases the columns ofP =
(v1|v2) are linearly independent, so thatP is invertible. We compute:

J = J(1) : AP = (Av1|Av2) = (λ1v1|λ2v2) = PJ(1)

J = J(2) : AP = (Av1|Av2) = (λv1|v1 +λv2) = PJ(2)

J = J(3) : AP = (Av1|Av2) = (αv1−βv2|βv1 +αv2) = PJ(3).

Thus, in each caseP−1AP = J.

Exercise 5.1.Using the notation of theorems 5.1 and 5.2, computeJ andP for the
following matricesA:

(

5 −4
4 −5

) (

0 1
−4 4

) (

0 1
−ω2 −2α

)

whereα andω are real constants (you’ll have to consider their relative magnitude.)
In each case verify thatP−1AP = J.

Exercise 5.2.Prove that any two conjugate matrices, that is, two matricesA andJ
related as in equation (20), have the same characteristic polynomial.

Exercise 5.3.Prove that the vectorsv1 andv2 of theorem 5.2 are linearly indepen-
dent in each case.

6 Linear planar systems

We begin out study of first-order ordinary differential equations on the plane with
the linear systems:

ż = Az z =

(

x
y

)

A =

(

a b
c d

)

(21)
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wherea,b,c,d ∈ R. (In this section, the pointsz ∈ R
2 are represented as column

vectors.) The vector field ˙z is a linear function of the co-ordinates. SinceA0 = 0,
all linear systems have a fixed point at the origin.

The linearity of ˙z = Az implies that ifz1(t) andz2(t) are solutions of (21) then
so is any linear combination ofz1 andz2:

z(t) = c1z1(t)+ c2z2(t)

wherec1 andc2 are arbitrary real numbers. This is called thesuperposition prin-
ciple, which says that the solution set of the system (21) is areal vector space. To
determine its dimension, we must generalise the notion of linear independence.

Two solutionsz1(t) andz2(t) of (21) are said to belinearly independent if, for
all t ∈ R the relationc1z1(t) + c2z2(t) implies thatc1 = 0 andc2 = 0. (The alert
reader will have noted that we have implicitly assumed that the solutions of a linear
system are defined for all realt. This is indeed the case —see exercises.)

If z1(t) andz2(t) are two linearly independent solutions, then the matrixZ(t)
having these vectors as columns, namely

Z(t) = (z1(t) |z2(t))

is called afundamental matrix solution of (21). By definition,Z(t) is invertible for
all t ∈ R. The solution of (21) withz(0) = z0 is expressed in terms of a fundamental
matrix solution as follows:

z(t) = Z(t)Z(0)−1z0. (22)

Indeed the right hand side of this equation is a solution, being a linear combination
of two solutions. Furthermorez(0) = Z(0)Z(0)−1z0 = z0. The result follows from
the uniqueness of the solution of the system (21).

Thus the solution space of (21) is two-dimensional, and our task is to find, for
givenA, a fundamental matrix solution. The simplest cases are the Jordan canonical
systems. We have three cases:

J = J(1) Z(t) =

(

eλ1t 0
0 eλ2t

)

J = J(2) Z(t) = eλ t
(

1 t
0 1

)

(23)

J = J(3) Z(t) = eαt
(

cos(β t) sin(β t)
−sin(β t) cos(β t)

)

.
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The validity of these formulae can be verified by a direct calculation —see exer-
cises. Note thatZ(0) = 1 in each case.

To solve the linear system (21) with initial conditionsz(0) = z0, we proceed as
follows. First we compute the eigenvalues and eigenvectorsof A, and identify the
Jordan canonical formJ of A as described in section 5. Then we compute the matrix
P using theorem 5.2.

From (20), the co-ordinate changez = Pw transforms the differential equation
(21) into

ẇ = P−1APw = Jw (24)

while the initial conditionz0 is changed tow0, where

w0 =

(

w0,1

w0,2

)

= P−1z0.

Note thatw0,1 andw0,2 are the components ofz0 with respect to the basisv1,v2:

z0 = Pw0 = (v1|v2)w0 = w0,1v1 +w0,2v2.

Next we solve (24) using formulae (22) and (23), to obtainw = w(t). Finally, we
revert back to the original co-ordinates:z(t) = Pw(t).

Putting everything together, we obtain

z(t) = Pw(t) = PZ(t)w0 = PZ(t)P−1z0.

For instance, forJ = J(1) we have, explicitly:

z(t) = w0,1eλ1tv1 +w0,2eλ2tv2

wherev1 andv2 are two eigenvectors ofA corresponding to the eigenvaluesλ1 and
λ2, respectively.

Exercise 6.1.Verify the validity of formulae (23).

Exercise 6.2.(The matrix exponential.) For any square matrixA andt ∈ R, define

eAt = ∑
k>0

1
k!

Ak = 1+At +
1
2!

A2t2 + · · · .

For each of the matricesJ in (23), verify that3

eJ t = Z(t)Z(0)−1.

(Comparison with (22) shows that the equation ˙z = Jz has solutionz(t) = eJtz0, just
like in the one-dimensional case!)

3Use the following result: if two matricesA andB commute, thene(A+B)t = eAteBt
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Exercise 6.3.Prove that the solution of (21) is defined for allt ∈ R.

Exercise 6.4.Let τ andδ be, respectively, the trace and the determinant of a matrix
A. Explain what happens to the eigenvalues ofA if τ is kept fixed whileδ varies
in R. Define a one-parameter familyAδ of matrices with fixed trace and varying
determinant, and describe the bifurcations of the corresponding system (21). Do
the same fixing the determinant and varying the trace.

7 Phase plane

On the Cartesian planeR2 we measure distances using the Euclidean norm:

‖z‖ =
√

x2 + y2

which satisfies the following properties, for anyz,w ∈ R
2 andα ∈ R

‖z‖ > 0 and ‖z‖ = 0 iff z = (0,0)

‖z+w‖ 6 ‖z‖+‖w‖
‖αz‖ = |α|‖z‖.

The distance betweenz,w ∈ R
2 is now defined to be‖z−w‖.

We consider planar differential equations of the form

ż = v(z) z(0) = z0 (25)

where
z = (x,y), v(z) = (v1(x,y),v2(x,y)),

andv1 andv2 are real-valued functions of classC1. Under this assumption, then, for
any z0 ∈ R

2 the solutionz = z(t,z0) of the initial value problem (25) exists and is
unique in a suitable time-intervalI = I(z0) = (α(z0),β (z0)) containing the origin.

A solution z(t) is periodic if there is a positive real numberT such that, for
all t ∈ R we havez(t) = z(t + T ). The smallest suchT is called theperiod of the
solution. The orbit{z(t) : t ∈ R} is called a periodic (or closed) orbit,

A point z∗ ∈ R
2 is anequilibrium point , or a fixed point, ifv(z∗) = 0, that is, if

z∗ = (x∗,y∗), then
x∗ = v1(x

∗,y∗) y∗ = v2(z
∗,y∗).

Let z∗ andw∗ be distinct equilibria. An orbit isheteroclinic if

lim
t→−∞

z(t) = z∗ lim
t→∞

z(t) = w∗.

18



If z∗ = w∗, then the orbit is said to behomoclinic.
The matrix

Dv(z) =









∂v1

∂x
(z)

∂v1

∂y
(z)

∂v2

∂x
(z)

∂v2

∂y
(z)









(26)

is called theJacobian matrix of v at z. If z∗ is an equilibrium point of (25), then
the ODE

ż = Dv(z∗)z

is called thelinearisation of the system (25). The error term in approximating (25)
by its linearisation isO(z2) = (O(x2,y2,xy),O(x2,y2,xy)).

7.1 Conservative and reversible systems

A real-valued functionH : R
2 → R is aconstant of the motion(or first integral )

of the system (25) if it is constant along any solution (namely if H(z(t)) = H(z(0))
for all t for which the solution is defined). We also require thatH be non-trivial,
that is, not constant on any open subset ofR

2.
For H to be a constant of the motion, the time-derivative ofH along the or-

bits must be equal to zero. We can check this condition without knowledge of the
solutions. Indeed let∇H be the gradient ofH. We find:

Ḣ(z) =
∂H
∂x

(z)ẋ+
∂H
∂y

(z)ẏ = ∇H(z) · v(z).

So the time-invariance ofH is equivalent to the following condition:

∇H(z) · v(z) = 0 (27)

If H is a constant of the motion, then the plane is partitioned into level set of the
functionH:

{(x,y) ∈ R
2 : H(x,y) = const.}

each level set consisting of one or more orbits.
Theconservative systemsare a prominent example of ODEs with a constant of

the motion. We start with Newton’s law:F = ma = mẍ. Lettingy = ẋ, we transform
this second-order equation into a pair of first-order ODEs:

ẋ = y

ẏ =
1
m

F(x)
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LetV (x) be defined —up to an additive constant— by the equationF(x) =−dV/dx.
Such a function is called thepotential. Then the quantity

E(x,y) =
m
2

y2 +V (x)

called theenergy, is a constant of the motion. Indeed, from (27) we have

Ė(x,y) = (−F(x),my) · (y,F(x)/m) = 0.

If V (x) = x2, then the level sets of the energy are ellipses.
A mapR : R

2 → R
2 is aninvolution if R2 = 1. A system of ODEs isreversible

if it is invariant under the transformations

t 7→ −t z 7→ R(z)

for some involutionR.
The map(x,y) → (x,−y) is an involution. Thus the system of equations

ẋ = v1(x,y) ẏ = v2(x,y)

is reversible wheneverv1 is an odd function ofy andv2 is an even function ofx. All
conservative systems are of this form, and hence are reversible.

Exercise 7.1.Consider the potential

Vλ (x) = λx+ x3.

sketch some level sets ofE, for different values ofλ . Find an equation for the level
set that separates closed and non-closed orbits.

Exercise 7.2.Let z∗ be an isolated fixed point of a conservative system. Show that
if the energyE has a local minimum atz∗, then the level sets ofE nearz∗ are closed
curves.

Exercise 7.3.Show that the Jacobian matrix of an involution has determinant ±1.

8 Limit cycles

Let z(t,z0) be the solution of (25) with initial conditionz(0) = z0, and assume that
this solution is defined in a time-intervalI = I(z0) = (t−(z0), t+(z0)) containing the
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origin. Thepositive orbit γ+(z0), negative orbit γ−(z0) and theorbit γ(z0) of z0

are defined as

γ+(z0) =
⋃

06t<t+

z(t,z0)

γ−(z0) =
⋃

t−<t60

z(t,z0) (28)

γ(z0) =
⋃

t−<t<t+

z(t,z0)

(29)

If γ(z0) is periodic, thenI = (−∞,∞) andγ+ = γ− = γ is a closed curve (which
reduces to a point ifz0 is a fixed point). A non-periodic orbit may approach a fixed
point z∗:

lim
t→t+

z(t,z0) = z∗. (30)

However, a non-periodic orbit may also approach alimit cycle, which is an iso-
lated periodic orbit, or a set consisting of several orbits.For example, consider the
following systems, expressed in polar co-ordinates(r,θ):

i)
ṙ = r(1− r)
θ̇ = 1

ii)
ṙ = r(1− r)
θ̇ = 1−cos(θ)+(r−1)2.

(31)

All orbits of each system approach the unit circle (apart from the origin). Ini) the
unit circle is a periodic orbit; inii) the unit circle is the union of a fixed point and a
homoclinic orbit.

We now introduce a machinery to characterise this form of convergence. The
main problem to be dealt with is the absence of the limit (30).

A point w is anω-limit point of the orbitγ(z0) if there is a sequence(t j) of
times such that

lim
j→∞

t j = t+ and lim
j→∞

z(t j,z0) = w. (32)

In other words,w is anω-limit point if for any neighbourhoodU of w there is a
time t∗ = t∗(U) such thatz(t∗,z0) ∈U .

The set of allω-limit points of γ(z0) is called theω-limit set of γ(z0), denoted
by ω(z0). By reversing the direction of time, and replacingt+ by t−, we obtain the
analogous concept ofα-limit set.

The simplest situation occurs when the limit (30) exists. Then, by lettingt j = j
andw = z∗ in (32), we find thatz∗ ∈ ω(z0). Since there cannot be any otherω-limit
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point (see exercises), we haveω(z0) = {z∗}. Thus if z∗ is an attractor, all pointsz0

in the basin of attraction will havez∗ as their commonω-limit set.
The same holds for all points of a homoclinic orbit, whereas if z0 is hetero-

clinic we haveω(z0) = {z∗} andα(z0) = {w∗}, wherez∗ andw∗ are two distinct
equilibria.

Let Γ be a periodic orbit. Ifz0 ∈ Γ, thenα(z0) = ω(z0) = Γ. However, ifz0 6∈ Γ,
then it is possible that one of the setsα(z0) andω(z0) is equal toΓ and the other
isn’t, as in example (31)i). Finally, the possibility exists thatω(z0) = Γ for z0 6∈ Γ
but ω(z0) 6= Γ for z0 ∈ Γ. We saw this in example (31)ii).

Exercise 8.1.Show that if (30) holds, thenz∗ is the only element ofω(z0).

8.1 Lyapounov functions

Let U be an open subset ofR2 containing the origin. A real-valuedC1 function
V : U → R

2 is said to bepositive definiteonU if

i) V (0,0) = 0
ii) V (x,y) > 0 ∀(x,y) ∈U \{(0,0)}.

A homogeneous quadratic formV (x,y) = ax2+bxy+cy2 is positive definite on
R

2 if and only if a > 0 andb2−4ac < 0. Indeed, supposeV is positive definite.
SinceV (x,0) > 0 for x 6= 0, we must havea > 0. If y = y0 6= 0 is fixed, then there
can be no real zerox of V (x,y0) = ax2 + bxy0 + cy2

0. So the discriminant of this
polynomial must be negative:y2

0(b
2−4ac) < 0, that isb2−4ac < 0. Sufficiency

follows from similar reasoning —see exercises.
Consider now a systems ˙z = v(z), where the vector fieldv has a stationary point

at the origin. A positive-definite functionL of an open neighbourhoodU of the
origin is said to be aLyapounov function for the fieldv if

L̇ (z) 6 0 ∀z ∈U \{0}. (33)

If in (33) we have strict inequality, then we speak of astrict Lyapounov function .
The following theorem is due to Lyapounov.

Theorem 8.1. If L is a Lyapounov function for a vector field with a fixed point at
the origin, then the origin is Lyapounov stable. IfL is a strict Lyapounov function,
then the origin is asymptotically stable.

PROOF. LetUε be the open disc of radiusε centred at the origin. Chooseε so that
Uε ⊂ U . SinceL is continuous, and the boundary ofUε (a circle) is closed and
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bounded, thenL assume a minimum valuem on such a boundary. Furthermore
m > 0, becauseε > 0 andL is positive definite.

Now chooseδ with 0 < δ 6 ε so thatL (x) < m for z ∈ Uδ . Such aδ exists
becauseL is continuous andL (0) = 0. If z0 ∈ Uδ , then for allt > 0 we have
z(t,z0) ∈ Uε , becauseL̇ (z(t)) 6 0 impliesL (z(t)) 6 L (z(0)). This proves that
the origin is stable. The proof of asymptotic stability in the strict case is left as an
exercise. ¤

The existence of a strict Lyapounov function implies that there cannot be peri-
odic orbits inU . This is because a strict Lyapounov function is strictly decreasing
along orbits, while along a periodic orbit the value of such afunction would have to
be periodic.

Exercise 8.2.Show that ifa > 0 andb2−4ac < 0, then the quadratic formax2 +
bxy+ cy2 is positive definite.

Exercise 8.3.Complete the proof of theorem 1.

8.2 The Poincar̀e-Bendixon theorem

The following theorem describes the possible limit sets of aplanar system.

Theorem 8.2.Let ż = v(z) be a planar system with a finite number of equilibrium
points. If the orbitγ+(z0) of z0 is bounded, then one of the following is true:

i) The ω-limit set ω(z0) is a single equilibrium pointz∗ and z(t,z0) → z∗ as
t → ∞.

ii) ω(z0) is a periodic orbitΓ and the orbitγ+(z0) is either equal toΓ, or it spirals
towardsΓ on one side of it.

iii) ω(z0) consists of equilibrium points and orbits whoseα- andω-limit sets are
equilibrium points.

The following theorem gives sufficient conditions for caseii).

Theorem 8.3. (Poincar̀e-Bendixon)Any boundedω-limit set which contains no
equilibrium points is a periodic orbit.

How can we use this theorem to establish the existence of a limit cycle? We
begin by defining apositively invariant set D as a set which contains the forward
orbit of all its points:

∀z0 ∈ D , γ+(z0) ⊂ D .
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(Such a set is sometimes called atrapping region.) We now attempt to construct
a bounded positively invariant setD which contains no equilibrium point, in the
interior or on the boundary. Then the Poincarè-Bendixon theorem ensures that there
is at least one cycle inD (which could be on the boundary).

We illustrate the above approach with an example:

ẋ = y
ẏ = −x+ y(1− x2−2y2).

(34)

We note that the origin is the only equilibrium point. To determine a positively
invariant bounded regionD we consider the functionV (x,y) = (x2 + y2)/2, and
compute its derivative along the orbits of our system:

V̇ (x,y) = ∇V · ż = y2(1− x2−2y2).

We verify that ifx2 + y2 < 1/2 thenV̇ (x,y) > 0 and ifx2 + y2 > 1 thenV̇ (x,y) < 0.
Therefore the annulus

D = {(x,y) ∈ R
2 :

1
2

6 x2 + y2
6 1}

has the desired properties; furthermore, the origin is not on its boundary. The
Poincar̀e-Bendixon theorem now implies that there is at least one periodic orbit
in D .
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