Queen Mary \& Westfield College UNIVERSITY OF LONDON

MAS/103 COMPUTATIONAL MATHEMATICS I

Thu May 27 1999, 10:00
Duration: 3 hrs.

You should attempt all questions. Marks awarded are shown next to the questions. Write your answers in the form of Maple commands, unless instructed otherwise. CALCULATORS ARE NOT PERMITTED.
[1] Basic literacy (10 marks).
Define the rational numbers, and describe their significance and main properties. Use approximately 100 words and no mathematical or Maple symbol whatsoever.
[2] Basic numeracy (12 marks).
(a) Determine BY HAND the fractional part of $1182 / 87$, in reduced form.
(b) Simplify BY HAND the following expression

$$
-\frac{2}{3 x^{2}}\left[\left(x^{2}-\frac{1}{3} y\right)^{2}-\frac{1}{9} y^{2}\right]^{2}-\frac{1}{9} x^{2} y\left(8 x^{2}-\frac{8}{3} y\right) .
$$

(c) Simplify BY HAND the following expression

$$
\frac{1}{\sqrt{5}} \frac{\sqrt{30}-\sqrt{12} \sqrt{15}}{(\sqrt{2}-\sqrt{3})^{2}}
$$

to the form $m+n \sqrt{d}$, where m, n and d are integers.
(c) QMW, University of London, 2000
[3] Sequences (12 marks).
Consider the sequence

$$
a_{n}=\frac{n-2^{-n}}{2+\frac{1}{3^{2 n}}} \quad n \geq 0
$$

(a) Construct a user-defined function a(n) whose value is a_{n}.
(b) Plot the elements a_{0}, \ldots, a_{30}, as points on the ($\left.n, a\right)$-plane.
(c) Show that the integer part of a_{30} is equal to 14 . (Indicate explicitly what output you expect from Maple.)
[4] Digits (12 marks).
(a) Display 50 decimal digits of e^{π}.
(b) Show that 100! has 158 decimal digits.
(c) Show that the third decimal digit of $17 / 97$ is odd.
[5] Sums and products (15 marks).
(a) Let p_{k} be the k th prime number, and let $\binom{n}{k}$ be the binomial coefficient. Compute

$$
\sum_{k=0}^{10}\binom{p_{k+1}}{k}
$$

displaying the result in factored form.
(b) Consider the sequence of rational functions

$$
f_{n}(x)=\frac{1}{x-1} \prod_{k=1}^{n}\left(1-\frac{k}{x^{k}}\right) \quad n=1,2, \ldots
$$

i) Construct a function $\mathrm{f}(\mathrm{n})$ for $f_{n}(x)$.
ii) Using the above function, construct $f_{4}(x)$, expressing it in the form

$$
\frac{\left(x^{2}-2\right)^{2}\left(x^{3}-3\right)\left(x^{2}+2\right)}{x^{10}}
$$

iii) Transform the numerator of the above expression into

$$
\left(x^{2}-2\right)^{2} x^{5}-3\left(x^{2}-2\right)^{2} x^{2}+2\left(x^{2}-2\right)^{2} x^{3}-6\left(x^{2}-2\right)^{2} .
$$

[6] User-defined functions (19 marks).
(a) Construct the boolean characteristic function $\operatorname{pr}(\mathrm{x})$ of the rational numbers x whose numerator and denominator are both prime.
(b) Construct the characteristic function of the integers that are relatively prime to 30 , whence, by performing a suitable summation, determine how many such integers lie between 1000 and 1100 .
(c) Let S be a finite (possibly empty) set of integers. Consider the following statements

```
> h:=x->evalb(x>=0):
>map(h,S):
> " intersect {true}:
> nops(");
```

The last expression can assume only two values. Explain what they are, and what information they provide about the set S .
(d) Let L be a list. Contruct a function rep(L) whose value is true if L has repeated elements, and false otherwise.
[7] Iteration (20 marks).
(a) Using a do-loop, construct the nested expression

$$
[[[[[[1], 2], 3], 4], 5], 6]
$$

No intermediate result should be displayed.
(b) Determine the smallest positive integer n for which the nth prime is greater than $10 n$.
(c) Consider the recursive sequence of matrices

$$
B=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) ; \quad A_{0}=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right) ; \quad A_{t+1}=A_{t} B-A_{0} \quad t \geq 0
$$

Compute

$$
\sum_{t=1}^{20} \operatorname{det}\left(A_{t}\right)
$$

(d) Two primes are consecutive is there is no prime between them, i.e., 7 and 11. Compute the number of primes which are equal to 2 plus the product of two consecutive primes, each smaller than 10^{4}.
[Hint: such primes are of the form $2+p_{n} p_{n+1}$, where p_{n} is the nth prime, and n lies in a suitable range.]

