# MAS/103 Computational Mathematics I: Coursework 8 

## Franco VIVALDI

This coursework will be assessed and count towards your final mark for the course

DEADLINE: Wednesday of week 12, at 1:00 pm.
CONTENT: Vector spaces.
PREREQUISITES: Chapter 9 of lecture notes.

MícroESSAY: Explain what is Maple. Use approximately 50 words, and no mathematical or Maple symbol.

Problem 1. Load the linalg package.
(a) Consider the following vectors in $\mathbf{Z}^{3}$

$$
u=(88,-2,33), \quad v=\left(-7,2^{7}, 1\right)
$$

Compute their sum and their scalar product. Determine which of $u$ or $v$ is the longest (using the 2-norm see lecture notes).
(b) Construct the following matrices

$$
A=\left(\begin{array}{cc}
1 & -2 \\
2 & 0 \\
3 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
4 & 6 & 2
\end{array}\right)
$$

Then modify one entry of $A$ as follows (without redefining the entire matrix!)

$$
A=\left(\begin{array}{cc}
1 & -2  \tag{1}\\
2 & 0 \\
-5 & 1
\end{array}\right)
$$

Then, using (1), compute $B A, A-B^{T}$ and $A^{T}+B$ (the superscript $T$ denotes the transpose of a matrix see ?transpose).

Problem 2. Consider the recursive sequence of matrices

$$
A_{0}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad A_{t+1}=A_{t}^{2}-A_{t}-I_{2}, \quad t \geq 0
$$

Where $I_{2}$ is the $2 \times 2$ identity matrix.
(a) Compute $A_{5}$, using a do-loop. Do not display any intermediate output.
(b) Compute and display the elements of the sequence of integers $D_{t}=\operatorname{trace}\left(A_{t}\right)$ for $t=1, \ldots, 5$. No other output should be displayed.

Problem 3. The commutator $[A, B]$ of two square matrices $A$ and $B$ is defined as

$$
[A, B]=A B-B A
$$

(Note that if $A$ and $B$ were numbers, $[A, B]$ would be zero.)
(a) Construct a user-defined function $\operatorname{comm}(\mathrm{A}, \mathrm{B})$ whose value is $[A, B]$.
(b) Given the matrices

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right) ; \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

we consider the sequence of matrices

$$
A_{n}=A^{n} ; \quad B_{n}=B^{n} ; \quad C_{n}=[A, B]^{n}, \quad n \geq 1
$$

By generating a sufficient number of elements of these sequences, convince yourself that they are all periodic and hence determine their period.

Problem 4. Let

$$
M=\left(\begin{array}{lll}
1 & 1 & 0  \tag{2}\\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

(a) Construct a Maple function $\mathrm{mu}(\mathrm{M})$ for the function $\mu$ which subtracts 1 from all entries of a matrix $M$, e.g, if $M$ is as above, then

$$
\mu(M)=\left(\begin{array}{ccc}
0 & 0 & -1 \\
-1 & 0 & 0 \\
0 & -1 & -1
\end{array}\right)
$$

(b) Consider the recursive sequence of matrices

$$
M_{0}=M ; \quad M_{t+1}=M_{t}+\mu\left(M_{t}\right), \quad t \geq 0
$$

Generate the first 5 elements of this sequence.
(c) By inspecting the result of the previous problem, conjecture the general form of $M_{t}$, valid for $t \geq 0$.
(d) Let $M$ be as in (2). Consider the recursive sequence of vectors of $\mathbf{Z}^{3}$

$$
v_{0}=(1,0,0) ; \quad v_{k+1}=M v_{k}+v_{0}, \quad k \geq 0
$$

Compute the smallest integer $k$ for which the scalar product of $v_{k}$ and $v_{0}$ exceeds 50 .
$\diamond$ MAPLE CHALLENGE: (for top marks)

Problem 5. Take a four-digit integer $x_{0}$, whose digits are not all the same: $\left(x_{0}=1729\right)$. Rearrange the digits to make the largest possible number (9721) and the smallest (1279). Subtract the smallest from the largest $\left(9721-1279=8442=x_{1}\right)$, and then repeat the above procedure on the result. We obtain a recursive sequence of four-digit integers $x_{t+1}=f\left(x_{t}\right), t \geq 0$.
(a) Construct a user-defined function for $f$. [Hint: you may need the Maple function sort.]
(b) Prove with Maple that $i$ ) for any choice of $x_{0}$, the sequence $t \mapsto x_{t}$ is eventually periodic with period 1 , ii) the repeating integer is always 6174 , iii) the longest transient is 7 .

