MAS/103 Computational Mathematics I: Coursework 5

Franco VIVALDI

This coursework will be assessed and count towards your final mark for the course

DEADLINE: Wednesday of week 8, at 1:00 pm.

CONTENT: Structure of expressions. Polynomials and rational functions.

PREREQUISITES: Chapters 5 and 6 of lecture notes.

M*croESSAY : Write a synopsis of the Maple function map, in fewer than 50 words. You may not use any Maple symbol, apart from map.

Problem 1. Consider the polynomial $(x^2 - 1)(x^4 + x^2 + 1)$. Using Maple, transform it into:

$$\begin{array}{lll} a) & (x^2-1)x^4+(x^2-1)x^2+x^2-1 & b) & (x^4+x^2+1)x^2-x^4-x^2-1 \\ c) & (x-1)(x+1)(x^2+x+1)(x^2-x+1) & d) & (x-1)x^5+(x-1)x^4+(x-1)x^3+\\ & & +(x-1)x^2+(x-1)x+x-1 \\ e) & x^6-1 & f) & (x-1)(x^5+x^4+x^3+x^2+x+1) \end{array}$$

Problem 2. Consider the rational expression

$$x + \frac{1}{x^2 + \frac{1}{x^3 + \frac{1}{x^4}}}$$

(a) Transform it into

$$\frac{x^{10} + x^3 + x^5 + x^7 + 1}{x^2(x^2 + x + 1)(x^5 - x^4 + x^2 - x + 1)}$$

(b) Transform the latter into

$$\frac{x^{10} + x^3 + x^5 + x^7 + 1}{x^9 + x^2 + x^4}$$

(c) Transform the latter into

$$x + \frac{x^7 + 1}{x^9 + x^2 + x^4}$$

6/6/2000

- (a) Construct the boolean characteristic function chi(p) of the polynomials $p(x) \in \mathbb{Z}[x]$ which are divisible by x + 2.
- (b) Consider the sequence of polynomials in $\mathbf{Z}[x]$

$$p_n(x) = x^2 + (n-1)x + n, \qquad n \ge 1$$

Use the function chi(p) to determine the smallest value of n for which $p_n(x)$ is divisible by x + 2.

Problem 4. Each expression E on the left is transformed into the expression on the right by map(f,E), for a suitable function f. Construct such user-defined function f in each case.

	E	$\mathtt{map}(\mathtt{f},\mathtt{E})$
<i>a)</i>	[0, 1, 2, 3]	[100, 101, 102, 103]
b)	a+b+c+d	1/a + 1/b + 1/c + 1/d
c)	$\{-20, 10, -10, -30, 20\}$	$\{10, 20, 30\}$
d)	[0, 1, 1, 1, 0, 1, 0, 1]	$\left[1, 0, 0, 0, 1, 0, 1, 0 ight]$
e)	[a+b,c+d,e+f]	$\left[a,b,c,d,e,f\right]$
f)	[a+b,c+d,e+f]	$\left[ab,cd,ef ight]$
g)	$[d^2, a^3, b^4, a^7]$	[d/(2+d),a/(3+a),b/(4+b),a/(7+a)]
h)	[[a], [[b]], [[[c]]], [[[[d]]]]]	[a, b, [c], [[d]]]
i)	[[a],[d,e,f],[g,h,i,j],[b,c]]	$\left[1,3,4,2 ight]$
j)	[[a],[b,c],[d,e,f,g],[h,i,j]]	[a,c,g,j]

Problem 5. Let L=[a,b,c,...] be a list of data to be plotted. Construct a function PlotList(L) which returns the list [[1,a],[2,b],[3,c],...] required by plot to display L.

♦ MAPLE CHALLENGE: (for top marks)

Problem 6. Let f(x) be a polynomial. A number α is a root of f(x) if $f(\alpha) = 0$. Thus $\sqrt{2}$ is a root of $f(x) = x^2 - 2$, and so is $-\sqrt{2}$. For any positive integer n we let

 $f_n(x) = x^n - 1;$ $\alpha_{n,k} = e^{2\pi i k/n}$ $k = 0, 1, \dots, n-1.$

Then $\alpha_{n,k}$ is a root of $f_n(x)$ for any choice of k, because

$$f_n(\alpha_{n,k}) = \alpha_{n,k}^n - 1 = e^{2\pi ik} - 1 = 1 - 1 = 0.$$

Now let n = 15. The polynomial $f_{15}(x)$ factors into the product of irreducible polynomials, the largest of which has degree 8. Determine the 8 values of k corresponding to the roots of the latter. [To get full marks you must not perform floating-point calculations.]

6/6/2000

CMI/Cwork5/Q