MAS/103 Computational Mathematics I: Coursework 5

Franco VIVALDI

This coursework will be assessed and count towards your final mark for the course

DEADLINE: Wednesday of week 8, at 1:00 pm.
CONTENT: Structure of expressions. Polynomials and rational functions.
PREREQUISITES: Chapters 5 and 6 of lecture notes.

MícroESSAY: Write a synopsis of the Maple function map, in fewer than 50 words. You may not use any Maple symbol, apart from map.

Problem 1. Consider the polynomial $\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$. Using Maple, transform it into:
a) $\left(x^{2}-1\right) x^{4}+\left(x^{2}-1\right) x^{2}+x^{2}-1$
b) $\left(x^{4}+x^{2}+1\right) x^{2}-x^{4}-x^{2}-1$
c) $(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$
d) $(x-1) x^{5}+(x-1) x^{4}+(x-1) x^{3}+$ $+(x-1) x^{2}+(x-1) x+x-1$
e) $x^{6}-1$
f) $(x-1)\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)$

Problem 2. Consider the rational expression

$$
x+\frac{1}{x^{2}+\frac{1}{x^{3}+\frac{1}{x^{4}}}}
$$

(a) Transform it into

$$
\frac{x^{10}+x^{3}+x^{5}+x^{7}+1}{x^{2}\left(x^{2}+x+1\right)\left(x^{5}-x^{4}+x^{2}-x+1\right)}
$$

(b) Transform the latter into

$$
\frac{x^{10}+x^{3}+x^{5}+x^{7}+1}{x^{9}+x^{2}+x^{4}}
$$

(c) Transform the latter into

$$
x+\frac{x^{7}+1}{x^{9}+x^{2}+x^{4}}
$$

Problem 3.

(a) Construct the boolean characteristic function chi (\mathbf{p}) of the polynomials $p(x) \in \mathbf{Z}[x]$ which are divisible by $x+2$.
(b) Consider the sequence of polynomials in $\mathbf{Z}[x]$

$$
p_{n}(x)=x^{2}+(n-1) x+n, \quad n \geq 1 .
$$

Use the funtion chi (p) to determine the the smallest value of n for which $p_{n}(x)$ is divisible by $x+2$.

Problem 4. Each expression E on the left is transformed into the expression on the right by map (f, E), for a suitable function f. Construct such user-defined function f in each case.

E
a) $[0,1,2,3]$
b) $a+b+c+d$
c) $\{-20,10,-10,-30,20\}$
d) $[0,1,1,1,0,1,0,1]$
e) $\quad[a+b, c+d, e+f]$
f) $[a+b, c+d, e+f]$
g) $\quad\left[d^{2}, a^{3}, b^{4}, a^{7}\right]$
h) $[[a],[[b]],[[[c]]],[[[[d]]]]]$
i) $\quad[[a],[d, e, f],[g, h, i, j],[b, c]]$
j) $\quad[[a],[b, c],[d, e, f, g],[h, i, j]]$
[100, 101, 102, 103]
$\operatorname{map}(f, E)$

$$
1 / a+1 / b+1 / c+1 / d
$$

$\{10,20,30\}$
$[1,0,0,0,1,0,1,0]$
$[a, b, c, d, e, f]$
[ab, cd,ef]
$[d /(2+d), a /(3+a), b /(4+b), a /(7+a)]$
$[a, b,[c],[[d]]]$
$[1,3,4,2]$
$[a, c, g, j]$

Problem 5. Let $\mathrm{L}=[\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$. .] be a list of data to be plotted. Construct a function PlotList (L) which returns the list $[[1, a],[2, b],[3, c], \ldots]$ required by plot to display L.

MAPLE CHALLENGE: (for top marks)

Problem 6. Let $f(x)$ be a polynomial. A number α is a root of $f(x)$ if $f(\alpha)=0$. Thus $\sqrt{2}$ is a root of $f(x)=x^{2}-2$, and so is $-\sqrt{2}$. For any positive integer n we let

$$
f_{n}(x)=x^{n}-1 ; \quad \alpha_{n, k}=e^{2 \pi i k / n} \quad k=0,1, \ldots, n-1
$$

Then $\alpha_{n, k}$ is a root of $f_{n}(x)$ for any choice of k, because

$$
f_{n}\left(\alpha_{n, k}\right)=\alpha_{n, k}^{n}-1=e^{2 \pi i k}-1=1-1=0 .
$$

Now let $n=15$. The polynomial $f_{15}(x)$ factors into the product of irreducible polynomials, the largest of which has degree 8 . Determine the 8 values of k corresponding to the roots of the latter. [To get full marks you must not perform floating-point calculations.]

