B.Sc. EXAMINATION BY COURSE UNIT
mth6107 Chaos \& Fractals

Duration: 2 hours
Date and time: May 02 2012, at 2.30 pm
Examiner: F Vivaldi

Attempt all questions; marks awarded are shown next to the questions.

Write your solutions in complete sentences. Marks are deducted for incorrect grammar/spelling.

- Do not use calculators.
- Do not remove this paper from the exam room.
- Write only in answer books; cross through any work which is not to be assessed.
- Possession of unauthorised material -in written or electronic form - is an examination offence. If you have material you are unsure about, give it to an invigilator now.
- DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO BY AN INVIGILATOR.
(c) Queen Mary, University of London (2012)

Question 1. \quad Marks: $(6,6,6),(4,4,4),(3,3,8),(4,7)]$
(a)
i) Explain what is an orbit, a periodic orbit, and an eventually periodic orbit of a dynamical system.
ii) Explain what is a diffeomorphism f of \mathbb{R}. What are the constraints on the number and period of the periodic orbits of f ? (No proof is required; consider both order-preserving and order-reversing cases.)
iii) Order the integers from 1 to 12 inclusive using Sharkovsky's ordering, then state Sharkovsky's theorem.
(b) Construct one-dimensional real maps with the stated properties. Justify any assertion you make.
i) A map with a single fixed point at $x=a$, where a is a given real number.
ii) A map with both bounded and unbounded orbits.
iii) A map with infinitely many periodic orbits of period 2 .
(c)
i) Explain (without proof) how to determine the stability of a fixed point of a one-dimensional differentiable real map.
ii) Do the same for a periodic orbit of arbitrary period.
iii) Determine the (real) fixed points of the one-dimensional real map

$$
f_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\lambda-x^{2}
$$

and analyse their stability as the real parameter λ is varied. (You may ignore the stability of the marginal cases.) What types of bifurcations take place?
(d)
i) Explain (without proof) how to determine the stability of a fixed point of a two-dimensional differentiable map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
ii) Determine the fixed points of the two-dimensional map

$$
F_{\lambda}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad F(x, y) \equiv\left(1-\lambda^{2} x^{2}+y, x\right)
$$

and analyse their stability as the real parameter λ is varied.

Question 2. [Marks: 4,5]

(a) Define the Lyapouvov exponent of a differentiable real map at a point.
(b) Let λ be a real number. Determine the Lyapounov exponent of the real map $x \mapsto \lambda x$, and show that it is the same at every point.

Question 3. [Marks: 4,7] Consider the doubling map

$$
f:[0,1) \rightarrow[0,1), \quad f(x) \equiv 2 x(\bmod 1) .
$$

(a) Prove that all periodic orbits of this map are unstable.
(b) Determine one periodic orbit of period 3. How many periodic orbits of period 4 does this map have?

Question 4. [Marks: (5,5),(5,5,5)]
(a)
i) Define the Hausdorff distance between two subsets of the plane.
ii) Define the box dimension of a subset of the plane, and explain what is a fractal.
(b) Let A be the following set

i) After choosing the size of A, compute the Hausdorff distance between A and the smallest filled-in square containing A.
ii) After choosing co-ordinates, construct an iterated function system whose fixed point is A.
iii) Compute the box dimension of A.

