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Chapter 1
Asymptotics

Let f andg be real functions. We writé(x) < g(x) to mean that

f(x)

lim —= =0
x= g(x)
and f(x) ~ g(x) to mean that
fx)
im—==1
x> g(X)

Exercise 1.

(@) Prove that iff (x) < g(x), thenf(x) = O(g(x)), asx — co.

[The big-O definition requires a constant; find it using therdgdn of the

limit (1).]

(b) Prove that the converse is not true, by giving a countargxe.

[Is f(x) = O(f(x))7

Exercise2. Prove that ifg(x) — o, then
f(x)<gx) = e <ed

Is the converse implication true?
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Exercise3. Let e andc be real numbers with & € < 1 < c. Order the following
functions according to the relation

X, ¢, &, %, € 1, X9 log(x), log(log(x)), log(x)C.
[Use Hbpital’s rule; take logarithms and then use problein 2.
Exercise4. Which function grows faster
X9 or  log(x)*?
[How are these functions defined? Use problem 2.

Exercise 5. Find an asymptotic expression for the function

_ x+log(xe) X
~ 1+41og(x®)  log(x)+/log(x)

f(x)

asx — co. Namely, find a functiomg simpler thanf, such thatf ~ g.
[Identify the dominant term of each numerator and denomimé&tan that of each
fraction, etc. (What's the logarithm of a produgt?)

Exercise6. Prove that

(1+2x+0(x%)) = (1+2¢)(14+0(x?))  x—0.

Exercise7. Prove or disprove

1

1. T~ 1+ O(x) x—0
2. cogx)sin(x) = O(x?) X — o
3. cogx)sin(x) = O(x%) X—0
4. cog0(x)) =1+0(P) all x

5. O(x+y)=0(®)+0(Y) Xy—w

6. eITO/M? _ e 0(1/n) n— oo

7. nl°9M™ = O(log(n)") n— oo
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Exercise 8. Multiply (log(n)+ y+ O(1/n)) by (n+ O(y/n)) and express your
answer inO-notation.

Solutions

Solution 1. Let

(a) .
lim ﬁ — 0.
x— g(X)
Fix an arbitrarye > 0. By definition of limit, there is a real consta@t such

that, for allx > C, we have
f(x)

(X)

This means that, for all sufficiently large we have
[F)] < elg(x)],
which states that (x) = O(g(x)), as desired.

< E.

(b) We show that the converse statement is false. Indeea]lfunctionsf we
havef(x) = O(f(x)). However,

- f(x)
I, F =170

and hencd (x) £ f(x).

Solution 2.  Assume thaff (x) < g(x), and thaig tends to infinity. We must show
that

2;8 _ of0-a g
that is, thatf (x) — g(x) — —oo.
We have
g0 () .
f09 - a9 =08 g1 — (@ - 1) 9X) ~ —g(x) — —o.

Alternatively, chooses < 1. Then for all sufficiently largex, we havef(x) <
[T(x)| < €lg(x)| = €g(x) (gis positive), orf (x) —g(x) < g(X)(1— &) — —o,
The converse implication is false. We haafe< €, butx 4 2x.
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Solution 3. We find
€< < 1< log(log(X)) < log(x) < 1og(x)¢ < X < x¢ < X9 — X < x* < ",

The only tricky relation is¢* < ¢, which is established by taking logarithms, and
using problem 2.

Solution 4. We will show, in three different ways, that
X290 < log(x)*.
By definition, we have
x09(X) _ dog(x)? log(x)* = eX09(log(x)
We compare the exponents
log(x)2 and  xlog(log(x)).

From the previous problem, we have [agf < x, and hence, lag)? < xlog(log(x)).
The desired result now follows from problem 2.

Alternatively, let
x109(%)

)= fogx*
We take the logarithm of both sides, and then divide bypgo obtain

_ log(f(x)) _ log(x)* —xlog(x) _
®) == C log(x) = log(X) — .

It is now clear that
lim g(x) = —o0o = lim log( f(x))

X—00 X—00

and hence
o egn
)lmo —Iog(x)x :,)!mof(x) =0,
as desired.
Finally, for every constart > 1, we clearly have

c* < log(x)*. (2)



Furthermore, we have
log(x)? < x

and hence
log(x)2 < xlog(c).

Taking exponentials, we find
X097 4 X,

which, together with (2), gives the desired result.

Solution 5. We find

2x+log(x) X
i 1+3log(x)  log(x)3/2
B 2x  1+log(x)/2x X
~ 3log(x) 1+1/(3log(x))  log(x)3/2
2X 1+log(x)/2x 3

3log(x) |1+ 1/(3log(x)) 2y/logx|
As x — oo, the quantity within square brackets tends to 1. Thus

2X
3log(x)

FO0) ~

Solution 6. We expand the product
(14 2X)(1+O(x%)) = 1+ 2x4 O(x?) + 2xO(x%) = 1+ 2x+ O(x%) + O(x>).
As x — 0, we haveD(x?) + O(x3) = O(x?), and the result follows.

Solution 7.

1. TRUE. Sincex — 0, we expand in Taylor series near zero

Doy = T+ =14 0(¢) = 1+ 0(x).

2. TRUE. Sine and cosine apeundedunctions, and so is their product. So we
may write sir{x) cogx) = O(1), for all x. Now O(1) = O(x?), asx — .
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3. FALSE. Expanding in Taylor series near 0, we have

sin(x)cogx) = (x+0O(x%))(140(x?))
= x+0(x%) +x0(x*) +O(x*)O(x’)
= x4+ 0(x3) +0(x%) + O(x°) = x+ O(x®).
The identityx+ O(x3) = O(x?) is false.
4. TRUE. Asx — 0, the statement follows from the Taylor expansion
cogO(x)) = 14 O(x)%2 = 14 O(x?).

As x — o, we have co&) = O(1) = O(x?).

This proof is a bit sloppy. We now develop a rigorous arguméoim the
definition of O. We have to show that the seton the left is a subset of the
setR on the right. If a functionf belongs toL, then we can writef (x) =
cogg(x)), where|g(x)| < c|x|, for somec. Then

1 (x) = 25ing(x)/2)? < 5900% < 20
_|_

This shows that 1 f(x) € O(x?), that is, thatf (x) €
Thusf eL= f € R thatis,L C R, as desired.

o) =R.

5. TRUE. We have

O(x+y)? = O((x+Y¥)?) = O(x*+y*+2xy) = O(O(x*) +O(y*))
= 0(0(x*)+0(0 (yz))—o( ?)+0(y?).

6. TRUE. First, we take care of the exponent.As> «, we find
(1+0(1/n))2=1+20(1/n) +0O(1/n)? = 1+ O(1/n).
Second, we expand the exponential

el O/ — oP/M — g(14+0(1/n)) = e+eQ(1/n) = e+O(1/n).

7. TRUE. This follows from problem 1(a) and problem 4.



Solution 8.  We expand the product

(log(n) + y+0(1/n))(n+O(v/A) = nlog(n)+yn+O(1) +O(y/Alog(n))
+O(/) +O(L/v/M).

As n — o, the dominant term i©(,/nlog(n)), namely

O(1/n) +0(1) + O(v/n) + O(/nlog(n)) = O(v/nlog(n)).

So we find

(log(n) +y+0(1/n))(n+O(v/n)) = nlog(n) + yn+ O(v/nlog(n)).
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Chapter 2

Periodic points

Exercise 1. Let the phase space be the selN of positive integers, and let the
dynamicsf : N — N be given by

_Jx/2 X even
f(X)_{Serl x odd.

(a) Prove thaf has no fixed points.

(b) Show that all pointg < 10 are (eventually) periodic, and compute their tran-
sient length, i.e., the length of the pre-periodic part o trbit throughx.
(With the help of a numerical experiment, you should be abléotmulate
the ‘3x+ 1 conjecture’, one of the most famous unresolved puzzlesiim-n
ber theory.)

Exercise2. We represent a real numbeas the sum of its integer and fractional
parts, namely

x=|x] +{x}.
The integer partx| (also called théloor of x) is the largest integer not exceeding
X, while the fractional part has values in the range §x} < 1.

Now letX = [0,1] and
_[{1/x x#0
10 ={ 0  x=0.

Prove thatf has infinitely many fixed points, and determine all of them.
[The tricky bit is to plot the graph of the function— {1/x}. Begin with the
restricted domain/3 < x < 1]
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Exercise3. LetX =[0,1] andf(x) = 4x(1—X).
(a) Determine all fixed points.

(b) For each fixed point, determine three eventually fixech{oi
[ Construct pre-images of fixed points undeand then their pre-imagés

(c) Determine all 2-cycles.
[Let R(x) = fK(x) —x. The 2-cycles which are not 1-cycles are the roots of
the polynomiab,(x) /Pi(x). (Why isP, /P, a polynomial? Think about if])

Exercise4. LetX =0,1], and letf be thetent map defined as

F(x) = 2X 0<x<1/2
S 12—-2x 1/2<x<1.

(a) Construct the functiofi®.
(b) The pointx =0 is a fixed point. Characterise the &eall the points inx that
eventually reackx = 0.
Exercise 5*. Let Z[x] be the set of polynomials with integer coefficients, and let

f : Z[x] — Z[X] be defined by the formula

p(X) —x'p(1/x)  n=degp)

where degp) is the degree op. Prove that all points oZ[x] are periodic with
period dividing 2. Characterise the fixed points.

Solutions
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Solution 1.
(a) If x is even, thenf (x) < x; if x is odd, thenf(x) > x. So we cannot have
f(x) =x

(b) We compute each orbit, until it reaches a point alreadymated.

orbit transient length
1,4,2,1,...] (a3-cycle)
oo
,10,5,16,8,4,.. ]
4,...]
5..]

3
7.22,11,34,17,52,26,13,40,20,10,.. |

]
9,28,14,7,.. ]

=

So all pointsx such that 1< x < 10 are (eventually) periodic with period 3.
The ‘3x+ 1 conjecture’ states that all orbits end up in the above 3ecyc

[
2
3
[
[
6,3
[
8,
[
10

(Y =
-b\ll—‘bCDwOU'IOO

Solution 2. The pointx = 0 is a fixed point. Fox # 0, the fixed point
equatiorx = f(x) reads

(e =

Let m be the floor of ¥x. We write the fixed-point equation explicitly:

}—m:x, where L§x<l, m=12,....
X m+-1 m
This givesx? + mx— 1 =0, and hence
_ —mxVnP+4
— 5 _
The negative sign does not yield points2ofOne verifies that (do it!)
0< M+ > WA ) m=12...

giving infinitely many fixed points.
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Solution 3.
(a) The fixed-point equation yields
Pi(X) = x(4x—3) =0,
giving two fixed pointsx* = 0 andx* = 3/4.
(b) Lettingy = f(x), we find
x= 1y = LY

Using f 1, we compute pre-images of fixed points. Kkde= 0 we find

0=x"
. 2+/2
X'=0—qq.1 )77 _
2 2—4f2

Note that the point 1 has a single pre-image, which is thecatipoint of the
function f. Forx* = 3/4 we obtain

.3 2+/3
4 2-/3
2-y3

(c) For period 2 we we must solve the equatidiix) = x, which yields
Po(x) = 64x* — 128x% + 80x? — 15x = 0.
We eliminate the fixed points. Long division gives

P2 (%)

200 — 16x% — 20X+ 5
P1(x)
and this polynomial has roots
., 5++/5
X:I: = 8 Y

which constitute the desired 2-cycle, since they are distjthey need not
be).
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Solution 4.
(a) Sincef is a piecewise-defined, sof$. It has four pieces. (Why?)

(b) We have
f ({0} ={0,1} ({1} = {1/2}.
Let Q C X be the set of all rational points in the unit interval whoseaa-

inator is a non-negative power of 2. We claim tlfat= ©, the set of all
pre-images of the origin.

We proceed by induction on the powerof 2 at denominator. The points
0,1,1/2 are inQ, which is the base case. Assume now that for sarpel,
all rational of the formx = m/2" are pre-images of the origin, whemeis an
odd integer in the rangeQ m < 2". Then we have

f‘l({m/Z”}) _ {m/2”+1, 1— m/2n+1} — {m/zh—b—l7 (2n+1 . m)/2”+1} cO.

This completes the inductive step, and we have showrmAlaiQ.

Conversely, lek = m/2" € Q be given. Ifx < 1/2 thenf(x) = m/2"~%, and

if x> 1/2 thenf(x) = (2"~1 —m)/2"~1. Furthermore in each case the power
of 2 decreases by 1. SB'(x) = 1, andx is a pre-image of the origin. This
shows thaQd C ©, and henc& = O.

Hint 5. Experiment with quadratic polynomials.
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Chapter 3

Stability of periodic orbits

Exercisel. Explain concisely what is a superstable periodic orbit. oy to use
symbols.

Exercise2. Let fy(X) =X+ A sin(x), with A > 0.
(&) Show that this map has infinitely many fixed points.

(b) Determine the range of valuesAffor which f has stable fixed points. (They
are subdivided into two families.) For what value)ofire they superstable?

(c) Determine the nature of the fixed pointsiat 2.

Exercise3. LetX =][0,1] andfy,(x) = ux(1—x) with u > 1.

(&) Show thatf has a superstable periodic orbit if such an orbit contaiagpthint
x=1/2.

(b) Show that auu = 1, the map has a single fixed point, and two fixed points for
H> 1.

(c) Determine theu-range for whichf has a stable 1-cycle. When is such a cycle
superstable?

(d) Determine the nature of the fixed pointiat= 3. [Hint: look at f2, near the
fixed point.]

(e) Determine thei-range for whichf has a stable 2-cycle. When is such a cycle
superstable?

15



16 CHAPTER 3. STABILITY OF PERIODIC ORBITS

Exercise4. Letx" be such thag(x*) =0, whereg is a differentiable real function.

(a) Show that ifg'(x*) # 0, thenx* is a superstable fixed point for Newton’s
method.

(b) Letd(x*) =0, and letk > 1 be the smallest integer for which

k *

Show thatx* is an attractor, but not a superstable one. Determine th&-mul
plier atx*, as a function ok. Comment on your findings.Hint: expand the
multiplier in Taylor series.]

Solutions

Solution 1. A periodic orbit is said to besuperstablef its multiplier is equal
to zero, that is, if one point of the orbit is a critical pointhe convergence to a
superstable orbit is faster than exponential. This meaatstiie distance of a point
from the cycle is of the order of the square of the distancéheffre-image(s) of
this point.

Solution 2.

(a) The fixed point equatioh sin(x) = 0 gives infinitely many fixed points¢; =
krt, k € Z, independent oA .

(b) The multiplier isf’(x) = 1+ A cogx), so that

1+A keven (typel)

I (k) -
f(xk)_l—i—)\COS(kn)_{l_)\ k odd (type II).

Type | fixed points are always unstable, sinkes positive. Type Il fixed
points are stable provided thakOA < 2, and superstable far = 1.

(@) ForA =2, linear analysis fails to establish the nature of type kdixyoints,
so we need to include nonlinear terms. We exp&fd nearx = rrin Taylor
series, lettingk = m+ 6. We find

f'(x) = 1+ 2cogXx) f"(x) = —2sin(x) f(x) = —2cogX)
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giving
f'lm=-1 f'"(m=0 {"(m)=2
so that L
f(m+0) = n—5+§63+0(65).
Thus

5i1=a (—1+§42+0<6:‘)>.

For sufficiently small &/, the quantity in parenthesis is smaller that 1 in ab-
solute value. S@ decreases, and these points are attractors.

Solution 3.

(@) We havef’(x) = u(1—2x), so there is a unique critical poir = 1/2, which
must belong to any superstable cycle.

(b) The mapf has two fixed points, namely 0 anti(u) =1—pu~L. Forpy=1
they coincide.

(c) Foru > 0, we havef’(0) > 1, so 0 is unstable, whered§x*) =2 — . This
means thax* is stable in the range 4 u < 3, and it is superstable for = 2.

(d) Whenu = 3, we havex* = 2/3. Letx = x" + d. We compute
9(d) = f(3) —x* =3(2/3+8)(1-2/3—-3) = -5 —35°

Then
9?(3) = 6 — 1853+ 276% = 5(1—183%+ O(3%)).

Thus, for sufficiently smalld|, the quantity in parenthesis is smaller than 1,
andx® is an attractor.

(e) The 2-cycles are the roots of the polynomial

fz(X>—X 2.2 2
_m_u Xe— (U+ U)X+ + 1.

P2 ()
Let x; andx, be the roots ofp(x). Then, looking at the coefficients g(x),
we deduce that
pr+p p+1 p+1

X1+ Xo = “2 = T X1 X = I«lz‘
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So the multiplier of the 2-cycle is given by
w(p) = T/ (x) f'(x2) = P?(1—2(xg + X2) +4x1X) = —p2 4+ 2+ 4.
The 2-cycle is born abv(u) = 1, or
w(H)—1=—(H+1)(u—3)=0

giving u = 3, as desired (the other root is out of range). The 2-cyclapes
stable ifw(u) = 0, that is, ifu = 1++/5 (we have chosen the positive sign
in front of the radical). This cycle bifurcates to a 4-cydled(u) = —1, that
is, if =1+ /6.

Solution 4.
(@) Letf(x)=x—g(x)/d(x). Then

o4 902 =9(¥)g"(x) _ g(x)g"(x)
=102 = g
Since, by assumptiogyx*) = 0 andg'(x*) # 0, thenf’(x*) = 0, that is x* is
superstable.

(b) Letd =x—x*, and leta = d¥g/dx¢(x*). From Taylor's theorem we have

g(x) = %5k+0(5k+1),
whence
a 3 a 3 B
g'(x) = (k_l)!ak L+0(8%) g'(x) = (k_z)!ak 2+0(8* ).
From the above we obtain
a’ 522 +O( 52k)
/ _ ! [k o g(x)g”(x) _ k! (k—Z)!
o) = Fec+o)= gx? a’ 522, o5k
AR
2
a 2
K=z "9
= 2
a—+o(52)
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The value ak = x* is obtained by letting tend to zero:

. k—1)!2 1
f'(x*) = lim f/(x* :(—:1——.

O) = lIm PO +0) = 4 =) k

The convergence is exponential rather than super-exp@ahenith rate 1—
k—1. Thus the convergence is maximal whes: 2, that is, when the second
derivative ofg does not vanish at the rogt.
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Chapter 4

Renormalisation

Exercise1l. Explain what is a bifurcation tree. Try not to use symbols.

Exercise 2. Describe the Feigenbaum-Cvitanowquation, and the significance
of its solutions. Try not to use symbols.

Exercise3. Consider the may : [0,1] — [0, 1] defined by

{x+2x2 0<x<1

N
|
[\
X
NI~

<x<1.
() Prove thaf has no stable fixed points.

(b) Prove thatf has no stable periodic points of any period.
[Look at the multiplier, using the chain rule of different@at. Consider the
pointx = 1/2 separately.

(c) Find a 2-cycle and compute its multiplier.

Exercise4. Let f be as in the previous problem.

(&) Show that in the vicinity of 0, the functiohis anapproximatesolution to the
Feigenbaum-Cvitano@iequation, in the sense that

af (f(x/a)) = f(x)+0().

What value do you get for the scalimgin this case?

21
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(b) Improve the accuracy of the above approximation as \igilo Let f (X) =
f(x) +c>3, and determine the parameteso that

af (f(x/a)) = f(x)+0O(*).

(c) Letg: R — R be given by

X
g(x) = 1 bx

whereb is a real constant. Show that this function is etactsolution to
the Feigenbaum-Cvitandvequation. (This solution is not relevant to period-
doubling, since it has the normalisatigf0) = 0. It is relevant to intermit-
tency.) Relate the functiogto the functionsf and f above.

[Expandy(x) in Taylor series about zefo.

Exercise5. Consider the logistic mafy, (x) = 1— A x%. Prove that ifA > 2, some
orbits from the interval—1, 1] escape to infinity.

[Look at the orbit of the critical point. First draw a pictutben from it construct a
rigorous argumerit.

Exercise 6. Let Z be the space of real analytic functiohs R — R, and letD :
> — 2 be the differentiation operator

CHICERL

Show thatD has a one-parameter family of fixed points. Find a 2-cycle add
cycle. Can you find eventually periodic points?

Exercise7. LetZ be the space of real functiorisanalytic atx = 0 and normalised
so thatf(0) = 0. LetR be the operator defined as

(Rf)(x)=af(x/a) a>1

Prove thaR: Z — . Specifically, prove thatR f)(0) = 0, and that ifo is the radius
of convergence of, then the radius of convergenceRf is ap. What happens to
the radius of convergence under repeated iteratiom&of
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Exercise8. Consider the Feigenbaum-Cvitanowquation for period-doubling
(Rf)(x)=af(f(x/a)) f(0)=1 f(x) = f(—x) a=1/f(1).

Find an approximate value for the universal constami* = 1/f*(1), whereRf* =
f*. Specifically, letf (x) = 1— A x?, and determin@ such that

(Rf)(x) = f(x)+0(x*)

whence the corresponding valueaf Compare the latter withr*.

Solutions

Solution 1.  We consider a real map, depending on a parameter. Its statiksc
are points on the real line. As the parameter changes, tlests @lso change, and
in the parameter-coordinate plane we obtain a graph, call@turcation tree.

The bottom branch of the tree corresponds to the fixed poihilevthe nodes
correspond to period-doubling bifurcations, where a cyoles stability, giving
birth to a cycle of twice the period. The leaves corresponthéoaccumulation
point of the period-doubling sequence.

Solution 2.  We consider a renormalisation operator, acting by functiomposi-
tion combined with scaling about the origin. The Feigenbalitanovic equation
is the fixed point equation of such operator, and its solgtame functions which are
invariant under composition and scaling. One typicallyk®&or analytic solutions
satisfying certain normalisation conditions.

For instance, restriction to even analytic functions witjuadratic maximum at
the origin, and whose value at zero is unity, yields the usaiunction of the accu-
mulation point of period-doubling. The associated scatingstant (the reciprocal
of the value of the fixed point at 1), is a universal constant.

Solution 3.

(a) The fixed points satisfy the equatié(x) = x, so there are two cases:

i) 0<x<1/2. We havex+ 2x? = x, hencex = 0. We find f/(x) = 1+ 4x
so f/(0) = 1, and we must look at higher-order terms. Sirf¢é0) =4 > 0,
we have that fox > 0, f(x) > x, and the fixed point is unstable.

i) 1/2<x<1. We havex=2-2x, givingx=2/3. We havef’(x) = —2
for all x in that range, so the fixed point is unstable.



24 CHAPTER 4. RENORMALISATION

(b) Let(xy,...,X) be an-cycle. We may assume > 1, since the fixed points
have been dealt with already. No point in theycle can be equal to/2,
since f2(1/2) = 0, and so 12 is non-periodic (it is eventually fixed). In
particular, f is differentiable at every point in the cycle. The multipla the
cycle is given by the product

f'(x1) ' (x2) --- ' (Xn).

For all pointx in the cycle we havex## 0,1/2. Thus the derivative of is
defined, and is greater than 1 in absolute value. It followas d&myn-cycle is
unstable.

(c) A 2-cycle must necessarily have one paitin the interval (0, 1/2) and
another pointy in the interval(1/2, 1). Letx € (0,1/2). Thenf(x) = x+
2x?, andf?(x) = 2—2(x+ 2x?). The equatiorf?(x) = x gives

—-3+v41
4% +3x—2=0 — xlst\/_
and we must choose the positive sign. Then
Yo = f(x1) 19— /41
2=TX) = ——

The derivative off atx; andx, is equal to - 4x; and—2, respectively. So
the multiplier of the 2-cycle is

2(1—4x) =5—v41< —1.

Solution 4.

(@) We constructf? using the left branchf (x) = x+ 2x2, since ifx is small,
f(x) < 1/2. We find

X2 X3 x4

Choosinga = 2 gives
21 (f(x/2)) =x+2x%+0() = f(x) + O

as desired.
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(b) Letting f(x) = x+2x%+ ¢ we find
2f(f(x/2)) = x+ 252 + (2+§) %@+ 0(x%) = f(x) + O(x4).

The last equation gives

C
24+ -=cC
*3

or c = 4. Thus the functionf(x) = x+ 2x2 4 4x3 satisfies Feigenbaum-
Cvitanovi equation near zero, up to order 4.

(c) We find
x/a
B x/a B 1-bx/a X
ag(g(X/a))—ag(m)—al ,_X/a _1-2bx/a’
- T1-bx/a

So choosingr = 2 we obtain

29(9(x/2)) = g(x)-
Note that, for sufficiently smal, we have

g(x) = 1_XbX:x(1+bx+b2x2+---) =x+bX+b23+ b3+

Thus the functions and f of the previous problem are two successive ap-
proximations to this solution fdo = 2.

Solution 5. Letxg = 0, the critical point. Themp = f2(0) = f(1) =1-A < —1,
sinceA > 2. We havef(—1)=1—A = —-1—c, withc=—-2+A > 0. Furthermore,
f’(x) = —2A x> 1 for all x < —1. Therefore, for alk < —1 we havef (x) < g(x),
whereg(x) = x—c. An easy induction shows thgt(x) = x— ct, and therefore, for
x < —1, we haveft(x) < x—ct.

Putting everything together, we hav&™(0) = f!(xp) <1—A —ct — —o, as

t — oo,
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Solution 6. We find that the function$ (x) = a€*, wherea a real number, form
a one-parameter family of fixed points bf

The setf{e™*, —e *} is a 2-cycle.

The set{sin(x), cogx), —sin(x), —cogX) } is a 4-cycle.

Let g(x) = f(x) + p(x), wheref(x) is periodic andp(x) is a polynomial. Then
g(x) is eventually periodic. The degree pfx) gives the transient length.

Solution 7. We have
(Rf)(0)=a f(0-a)=a f(0)=0.
Let ps be the radius of convergence of the series

fx)=F ot
kZO

or .
= = limsup(c)¥X < oo

k— 00

Let now f = a f(x/a) where
f(x)= Zoékxk.
K=

We find o

%= k1

and therefore

= = &)k = I ] / =—I - '
o)™ imse (e ) "= Simste = o
Thus

p=ap.
Under repeated applications Bf the radius or convergence diverges to infinity.

Solution 8. Let f(x)=1—Ax2 Thena =1/f(1)=1/(1-A), and
(Rf)(x) = /\—ilf(l—)\(l—)\)zxz) =14+2A%(1—=2) X2+ 00x%).
Requiring that Rf)(x) = f(x) +O(x*) yields 242 —2A —1=0, or

1++/3
2
to be compared with the exact valaé = —2.50290.. ..

A= a=-1-+3=-2732...




Chapter 5

Homeomor phisms and
diffeomor phisms

Exercise1l. Consider the following map$: R — R with f(x) given by
a) —2x+7 b) —x° c) x3
d) e e) —2x—sin(x) f) x4sin(x)

Decide in each case if is a homeomorphisms, a diffeomorphisms, or neithef. If
is a hom(diff)eo, decide if it is order-preserving or revegs

Exercise 2. We represent the circlé! as the interva[—1, 1] with the end-points
identified. Consider the following family of mappings

fy:st—st LX) =Ax+(1-2), AeR.

Determine the ranges of values ffor which f, is i) a homeomorphism;ii) a
C'-diffeomorphism (in which case you must determifgiii ) neither.
[Note that both domain and co-domain are circles, so the peibtand+1 must be
identified. In all, there areevendistinctA -ranges to be consideréd.

Exercise 3. Construct orientation-preserving diffeomorphisths R — R with
the properties specified below. (First draw the graph of ation with the desired
properties. Then define it analytically, and prove thatiisé@s such properties.)

(&) A single attractive fixed point at= —1.

(b) A single fixed point ak = 0, which is neither attractive nor repelling.

27
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(c) Three fixed points —two attractors and one repeller.
Exercise 4. Construct an orientation-reversing diffeomorphisisR — R with
the following properties.

(a) A single unstable fixed point at= 1.

(b) A single symmetric 2-cycle, that is, a 2-cycle of the fofrg, —xo}.

Exercise 5. We wish to construct an orientation-reversing diffeomasph of a
neighbourhood of the origirall whose points are 2-cycles (we ignore the trivial
casef (x) = —x). The strategy is to build (x) as a power series, in such a way that
f2(x) = x+ O(xX), for increasingk.

(@) Letf(x) = —x+x2. Verify that f2(x) = x4+ O(x3).

(b) Let f(x) = —x+x2+ax3, wherea is a real parameter. Determimeso that
f2(x) = x+ O(x°).

(c) Proceed as above to determine the coefficient of termsgbieh degree, up
to the largest degree you can handle (you may need Maple) lafdger the
degree, the larger the mark.

Note: the above method yields onlyfarmal solution, since the power series
constructed in this way may have a zero radius of convergence

Solutions

Solution 1.
a) Order-reversing diffeo.
b) Not invertible, so neither.

d

)
c) Order-preserving homeo, but not diffeo sinice! is not differentiable at zero.
) Not surjective, so neither.

)

e) Order-reversing diffeo.

f) Order-preserving homeo, because the derivative vanishes.
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Solution 2.  We compute
f/(X) =A +3(1—A)x? f7(x) =6(1—A)x.

As a real function, the functioffi is analytic. We check its behaviour at the points
x==1. We findf(1) =1 andf(—1) = —1, and since 1 and-1 are identified,
f is continuous orB!. Furthermore,f’(1) = f/(—~1) = 3— 2A, whereasf”(1) =
—f”(=1) =6(1—A). Thereforef is of classC! but notC?, for all values ofA,
except forA = 1 (see below).

Furthermore A

T 3A-1)

Sof’(x) does not vanish at all, or does not vanish in the intelrval 1], respectively,
in the ranges

f/x)=0 «— x

0O<Ax<l 1</\<g.

There are three critical values.
i) A =0. The functionfy(x) = x is of classC®.
i) A =1. The functionf;(x) = x is of clasC”.
iii) A =3/2. The functionfs(x) = (3x—x3)/2, is of clas<C°.

SUMMARY:
A class comment
(—o,0) - f not invertible
0 Co f~1 not differentiable ak = 0
(0, 1) ct f” not continuous ax = 1
1 c” f(x) =x
(1,3/2) Ct f” not continuous at = 1
3/2 ct f~1 not differentiable ak = 1
(3/2,0) - f not invertible

Solution 3.

(@) We letdy(x) = f(x) —x= a (x+1), giving f(x) = x(a + 1) + a. Choosing
a > —1 we ensure the orientation-preserving property, whilef@r< a < 0
the pointx = —1 is an attractor. Thus1 < a < 0.
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(b) The function

1 , p 3x%—1
9 =1 7= _Z(X?)(l)z 700= 2(x2+1)3

has a single maximum at= 0, with g(0) = 1. The second derivativg’ (x)
vanishes ak = +1/+/3, so that

9| < |d(1/v3)] = Q—% <1

Moreoverg’(0) < 0. Therefore the function
f(X) =x—1+9(x)
has the following properties:
i) f'(x)>0 i) f(0)=0 i) f(0)=1 iv) f”(0)<0.

Now, the functionf is differentiable (becausg is). i) says thatf is an
orientation-preserving diffeomorphismii) says thatf has a fixed point at
zero.iii ) andiv) say that such a point is neither an attractor nor a repeller.

(c) Leta be a positive real number, and let
1
f(x) = t f'(x) = ——>0.
(X) = ax+ arctar{x) (X)=a+ ] >

Thenf is an orientation-preserving diffeomorphism of the rea¢li The fixed
point equation reads

®1(x) = f(X) —x= (a — 1)x+arctar{x) =
We have®,(0) =0, sox = 0 is a fixed point. Furthermore
D1(x) = ax+0(x%), x—0; D1(x) = (0 —1)x+O(1), X— co.

Let 0< a < 1. Then®4(x) is positive for sufficiently smalk and negative
for sufficiently largex, and from the intermediate value theorem, there exists
a pointx* > 0 for which®1(x*) = 0. Such a point is unique, sing¥/(x) < 0

for all positivex. The third fixed poink = —x* then results from symmetry:
®1(x) = —P1(—x). Sincef’(0) = a +1> 0, the origin is a repeller. Since

0 < f/(x*) = f/(—x*) < 1, the other points are attractors.
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Solution 4.

(@) We letd4(x) = f(x) —x= a(x+ 1), giving f(x) =x(a + 1)+ a. We need
a < —1 forreversing the orientation and + 1| > 1 for a repeller, sar < —2.

(b) Consider the analytic function

f(x) = —x+£g(X) g(x) = (¢ —xg)e*.

We havef (£Xp) = FXo, SO{Xo, —Xo} is a 2-cycle. The functiog(x) is dif-
ferentiable withboundedderivative|g'(x)| < C, say. Thenf’(x) > 0 for all
|e| < 1/C. Sinceg(x) does not vanish at any other poitfi{x) does not have
any other symmetric 2-cycle.

(Generalisation. The function
n
2

f(x) = —x+¢eg(x) 9(x) = _r!(xz —xf)e

has precisely» symmetric 2-cycles. Furthermore, for sufficiently small f
is a diffeomorphism.)
Solution 5.

(a) We have
f2(x) = x— 2 +x* = x4+ 0(x3).

(b) Let f(x) = —x+x%+ ax3. We find
f2(x) = x=X—ax>+(—x+x+ax®)?+a(—x+x2+ax®)?
= x=2(a+1)x+(a+1)x*+a(—1+3a)x°+0(x°)
Choosinga = —1 we kill both the cubic and quartic term, giving
f2(X) = X+ 4 + O(®) = x+0(x).
(c) The function

43981 1,
12960

1111801, 558379369, 527406923
68040 5443200 653184

B 1015535294678)3215%L 1744810298722896%0
1306368000 193995648000 '

f(x) = S G = xR+ 2x 17368+ 20,8
“QZ; kD= 3 540




32 CHAPTER 5. HOMEOMORPHISMS AND DIFFEOMORPHISMS

has the property that
2(x) = x4+ 0(x%3).

This expansion is almost certainly divergent, as demotestray the the reg-
ular growth of(c) /K with k.

1.6 | ‘
1. 4] | I H ‘

1. 24 I\ I Il |

|\ [ |
0. 8 \ w‘”\ I || | ||

0. 64

Figure 5.1: Growth of the coefficients.



Chapter 6
Doubling map

Exercisel. Orderthe integers from 20 to 30 inclusive, using Sharkovestgder-
ing. Then explain what it means.

Exercise2. Consider the doubling map.

(a) By looking at periodic binary digits, show that there #meee orbits of mini-
mal period 4. How many orbits are there of minimal period 6?
[ To answer, you do not need to compute all 6-strihgs!

(b) Determine all points of the 3-cycle with initial conditi

Xo=.001001001001.. =.001

as rational numbers.
[ The numbekg is the sum of a geometric series.

(c) Do the same for the 6 cycle

Xp =.001101001101001101. =.001101

(d) Divide the unit interval in four equal sub-intervalsnoe determine how the
points of the periodic orbit with initial condition/b1 are distributed among
those intervals. Do the same with the orbit with initial cirosh 1/13.

(e) Divide the unit interval in 16 equal sub-intervals, hexetermine the binary
digits of a 16-cycle that has has one point in each sub-iaterv

33



34 CHAPTER 6. DOUBLING MAP

(f) Let x be a point in am-cycle of the doubling map

x=73 b2 K X = Xicin.-
K=1
Prove that
B h L n—k
x:zn_1 where B:B(bl,bg,...,bn):kglbkz :

[Write k= sn+r, with1 <r < n, then split the summation into two patts.

Exercise3. Consider the mappin§(x) = 1—2,/|x| on the interval—1,1].

(a) Draw the graph of hence determiné’. Is this map chaotic?
[This is a tricky question. Consider the orbit with initial @tionx = 0 sep-
arately. You would need a positive lower bound for the Lyapmuexponent,
but that’s hard to obtair.

(b) Theory shows that the average position of the pointstymcal’ non-periodic
orbit is equal to—1/3, namely that

1 N1 1
X= lim = S
N—oco N t;Xt 3

Compute numerically the average position of the points ofréit,ausing an

initial condition xp of your choice and the largest value lfyour computer
can handl& Verify that this result is in agreement with the theory (Dat n
expect great accuracy: convergence is slow.)

Solutions

Solution 1.
24928<20<130<26<22129<127<125«123«21

If a continuous mag : [a,b] — R has an orbit of one of the above periods, then it
also has orbits of all the periods that are “smaller” acawgdio this ordering. In
particular, if the period 21 is present, so are all the otlegiqals in the list.

Lif N < 1000, then it is time to junk your computer.
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Solution 2.

(@)
001100010111

There are 2 binary strings of length 6. Of those? Bave minimal period 3
or 1, which must be subtracted. Furthermofestings have minimal period
2 or 1, which must also be subtracted, except that in doingessubtract the
1-strings twice. Thus the total number of strings of minipeatiod 6 is

2% 28 22,901 _64-8_442=-54

The total number obrbitsis then given by 546 = 9.

(b) We have
_ 001 1 L1 1 1 . o1l
SR k:ls'_
Then 5
x152xo(mod1)=7 Xp =2X1(mod 1) = =
(c) We have

Xo = .001101=.000001+.000100+.001000
.000001x (1+4+8)

@ /1\* 13
k; 26 63
Iterating the map, we find

13 26 52 41 19 38

XOZE%, X1:6_3; XZZ@, X3:a3, M:@, XSZ@-

(d) Letxp=1/51. The numerators of the points in the orbits are
1,2,4,8,16,3213 26,1,...

So the orbit has period 8. We partition the unit interval ifdor sub-intervals

lk=[(k—1)/4,k/4) k=1,...,4 Fﬂw:mﬁy
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We have (referring to numerators only)
{1,2,4,8} 11 {1316} € 1, {26,32} € I5.
Likewise, ifxgp = 1/13 we find
1,2,4,8,3,6,12,11,9,5,10,7

so the period is 12. This time there are 3 points in each iateso the orbit
Is uniform.

()

X0 =000011110010110% 259/4369

The above string contains all 4-substrings. (There is nwaa tne orbit with
this feature.)

() Let the binary representation &taven periodic digits
X=.b1---bp
Then .
x=3 b2 bc=byn, Vk>0.
k=1

By writing k = sn+r, with 1 <r < n, we obtainbx = by, from the above
equation, and we can write

00 n
X = b2 "| 27"s
S= [rzl ]
n

[ee]

_ rzl by 2" _S;)(z—n)s

n
1

- br 27[‘ —

r; 1-2-n

n
1
— 2n 2—I‘
rgl 8 2N -1

n
- Z br 2n_r

] 2n—1
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Solution 3.

(@) Lety= f(x) =1—2,/|x]. We find

(b)

M = (T) X—i(7> -
The map is not differentiable at= 0. We find

1 X< 0

f'(x) = viX

The orbit of O of pre-periodic: 6+ 1+— —1+ —1. Apart from=+1, the map

is differentiable with| f’(x)| > 1, so the map appears to be chaotic. However,
to prove it in a straightforward way, we would need a positow@er bound

for the Lyapounov exponent. However, the quantity|i5¢x)| is not bounded
away from zero.

We compute
1 N—-1
AN(X0) = Z} X
t=
# —--—- the function £
f:=x->1-2*sqrt(abs(x)):
# ——-- parameters
N:=1000:
nprint:=5:
# -——- initial condition
x:=1.0/3.0:
xbar:=x:
# ——-- main loop
for s to nprint do
to N do

x:=f(x):

xbar:=xbar+x

od:

print (xbar/(s*N))



38

od:

CHAPTER 6. DOUBLING MAP

Selected output faxo = 1/3:

N
1000
2000
3000
4000
5000

Convergence is slow.

AN
—0.3450708675
—0.3573080697
—0.3362268846
—0.3128255468
—0.3164218084



Chapter 7

Conjugacy

Exercisel. Whatis chaos? Explain it briefly, without using symbols.

Exercise 2. Write f ~ gif f is topologically conjugate tg. Prove that~ is an
equivalence relation, i.ex is reflexive, symmetrical and transitive.

Exercise 3. Let f andg be conjugate via a diffeomorphism Let f have a fixed
point atx*.

(a) Prove that the multiplier af ath(x*) is the same as that dfatx".

(b) Formulate and prove the analogous statement foreycle.

Exercise4. Consider the following mappings

f(x) =ax oy) =by (a#b).

(a) Determine conditions oa andb for which f andg are conjugate viy =
h(x) = X", wheren is a positive integer.

(b) Use problem 2 (a) to infer that no diffeomorphism existéch conjugates
andg.

Exercise5. Let f(x) = 2x(1—x), and leta, b be distinct complex numbers. Con-
struct a ma(y) which is conjugate td', and which has fixed points st= a and
y = b (with the former superstable).

39
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Exercise6. Consider the complex mapping

z
f(z) = ;;n nez.

(&) Show thaff is the Newton’s iteration for finding the solutions of the atjan

Z-n=0.

(b) Show thatf is conjugate to

g(w) =w?
via
w=@(z) = zt ﬁ

(c) Using the above conjugacy, what can you say about thegtierorbits of f,
and their stability?

Solutions

Solution 1. Chaos is sensitive dependence on initial conditions, a nmesmathat
causes the orbits of a dynamical system which are initidthge to each other to
separate exponentially. Chaotic systems features a dehsé wastable periodic
orbits.

Formally, a system is defined to be chaotic if its Lyapoungyoment is positive.
This is the average of the logarithm of the multiplier alomgoabit, which turns out
to be the same for almost all orbits.

A most prominent feature of chaotic behaviour is the emezgef probabilistic
laws, which exist alongside the extremely complex orbitations.

Solution 2. Notation:
flg <  hof=goh

Reflexivity: f~1 f.

Simmetry: #~"gimpliesh~tog= foh=1, that is,g~" f. Nowhlis a
homeo, by definition.

Transitivity: if f ~"gandg~KI, then

f=htogoh=h"toktolokoh=(koh)™tolo(koh).
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Now, the composition of continuous bijections is a contumsibijection, sqko h)
is a homeomorphism, anio~-kh|.

Solution 3.

(@) We haveg = ho f oh™. Hence, letting/ = h(x), we have

g(y)= (") (y) f'(x) K (f(x))

If xis a fixed point,f(x) = x, and therefore

g(y) = f'((h™) () ()]

but the product in square brackets is unity, because
1= (h"toh)'(x) =h(x) (h)(y).

(b) Leth be a smooth conjugacy betweerandg, and let{x;}}y_, be am cycle
for f. Then{h(x{) }\_, is ann-cycle forg, with the same multiplier.

For ann-cycle, first note that if ~ g, thenf" ~ g". (with the same conjugacy
function —see notes). Furthermore we know (see notes){that)},_, is
ann-cycle forg. Then proceed as above wifft andg" in place off andg,
respectively.

Solution 4.

(&) We have
h(f(x)) = (aX)" = g(h(x)) = bx".

Sob = a", with n odd. This is a homeomorphism, but not a diffeomorphism.

(b) It suffices to note that andg both have a unique fixed point, but with differ-
ent multiplier.
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Solution 5. The mappingf as an unstable fixed point at= 0 and a superstable
fixed point atx = 1/2.
Let h(x) = mx+ q. Requiringh(0) = b andh(1/2) = ayields

h(x) = 2(a—b)+b h1(y) = 3 b)

The equatiorg(y) = h(f(h~(y))) gives

2
_y“—Zay+ab

which is the desired mapping.

Solution 6.
(a) The Newton’s map for finding the roots of the equatiyn) =22 —n=0is

h(z) Z-n_Z+n
W(z) "7 T oz

(b) Two mappingd : X — X andg:Y — Y are (topologically)onjugatef there
exists a homeomorphism (bi-continuous mgp) X — Y such thatpo f =

go@.
The mapg is a homeomorphism of the Riemann sphere. We proveghat
f=goo.
Z+n+2z/n (z+/0\2 )
@12 = 5ot = (220 = (0 = (@o 02

(c) The restriction ofg to the unit circle is the doubling map, and herzbas
infinitely many periodic orbits, of every period. All thesgates are unstable,
and they are dense on the unit circle, which is the Julia sgt lof addition,g
has two superstable fixed points, at 0 and

It can be shown that a smooth conjugacy preserves periodits@nd their
multipliers.

Because the conjugagyis smooth, the map has the same orbit structure as
0. (One verifies thal(f) isR if n< 0, andy/—1R if n>0.)
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Two-dimensional mappings

Exercise1l. Consider the following two-dimensional map:

(%Y) = (f(x,¥),9(xY)).
Write down the equations whose solutions are the points abgelividing 3.
Exercise2. Consider the following map dR?:

(X, W) = (%+1,Ye+1)

where

X1 = —Ye+9(%)
Vitr = % —0(%+1)

andgis a real function.
[Check the subscripts carefully.

(a) Find a functiorg for which @ has no fixed points.
[ This means that the fixed-point equation has no solufions.

(b) Letg(x) = A + x2. Determine the range of values bdffor which ® has two
distinct fixed points.
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Exercise 3. Consider the two-dimensional mapping

X1 = Xt‘i‘@_xt—Fi'
i Vil Vi + Sinx;’
Yi+1 = Yt +Sinx.

wherex,y,A are real numbersd > 0, y; # 0, andx; is periodic with period 2.
(Thus the phase space is a cylinder, with the ciycie0 removed.)

(&) Show that the mapping has two infinite families of fixednp®i
(b) Show that, for fixedA, the number of (marginally) stable fixed points is at
most finite. Determine the range of valuesiofor which all fixed points are
unstable.
Exercise4. Consider the linear map
f:C—-C f(zg=Az

Prove that all orbits off are periodic if and only ifA has unit modulus, and its
argument is a rational multiple ofr2

Solutions

Solution 1.

Solution 2.
(a) Lettingx = %1 =Xxandy; = yt+1 =Yy and adding the two equations, we find
X+y=—y+X

giving y = 0, hencex = g(x). So the fixed points o take the form(x*,0),
wherex* is a fixed point ofg. Therefore ifg has no fixed point, neither has
®. We choosg(x) = x+ 1, say.
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(b) The equatiom(x) = x givesA + x* = x, and hence

— 1+v/1-4A
= 5 _
For two distinct real solutions, the discriminant must besipee, whence
A <1/4.
Solution 3.

(&) The Jacobian matrix is given by

1_2mAcosx)  _ 2m\

J(x,y) = ( (y+sinx)? (y+sinx)2).
cogx) 1

One sees that Dgl(x,y)) = 1 (the mapping is area-preserving).

The fixed points are:

2mA
y
They form two families:

21K x= 0, m(mod 2m) keZ k#0.

(0,A /K) (A/K)  Kk#£0.

(b) We compute

2mk | 2mk?
A JK) = <1+T +T)
1 i
271k?
Tr(J(mA/Kk)) = 2+T > 2

so the pointg T, A /k) are all unstable.

We have
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For marginal stability, we require T3(0,A /k)) > —2, that is,

K2
A _
=2

which can be satisfied for at most finitely many valuek.oflhe inequality

(1) implies
TIA
V>

which shows that the (marginally) stable fixed points arated sufficiently
far away from the origin.

From (1) it also follows that foA < 71/2 there are no stable fixed points at
all.

Solution 4. We havez, = A'zy, so if zp = z,, then|z| = |zy| = |A ||zo]. If 20 # O,
this gives|A | = 1, as desired.
Let now
A =&,

For periodicity wherz # 0, we needA\" = 1. This gives 2Zran = 2k, for some
k € Z. But thena = k/n, a rational number.

Conversely, iffA| = 1 and the argumentr&x of A is such thatr = k/n, with
k andn coprime, them is the smallest natural number such th&t= 1, and all
non-zero points are periodic with the same pemod



Chapter 9

Fractals

Exercise1l. Prove that the box dimension of the set
{1/n” : ne N} a>0

isequalto ¥(a +1).

Exercise 2.

(a) Explain why in the definition of Hausdorff distance betmdwo subsets of
the plane, these sets are required to be closed and bounded.

(b) Compute the Hausdorff distance between the unit disc ditié@in square
inscribed in it (that is, the vertices of the square belonthé&unit circle).
Exercise 3. Let h(A,B) be the Hausdorff distance between two compact subsets
of R.

() LetC be the Cantor ternary set, lebe the closed unit interval, and latbe a
set constituted by the point 0 and the rationat§,3or k= 0,1,.. ., that is

11
A= 1, -, 5,... ¢
{O’ 737327 }

Computeh(l,C), h(l,A) andh(A,C).

(b) Determine iterated function systems whose attract@$,& andA, respec-
tively.

47
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Exercise4*. Let.77(C) be the set of all closed and bounded subsét,ofith the
Hausdorff distance. L&t be the unit circle inC. Characterise the sets i#’(C)
which belong to the circle of unit radius and cenfie

Exercise5. LetA be the set of figure!9.

Figure 9.1: A fractal.

(a) After choosing coordinates, construct the iteratedfiom system® whose
fixed point isA.

(b) Compute the box dimension Af hence show tha is a fractal.

(c) Write a Maple code to generate and plot this fractal.

Solutions

Solution 1.  We choose boxes of sizg, where

e—l— ! limeg, =0
" na (n+1) noo
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Using the binomial theorem, we find
. (n+1)%—n* n9+an®1+0(n?=2)—n“
"7 no(n+1)@ n%(n+1)°
a+o(n ) a
n(n+ 1)0! na+1

where, if f andg are real functions, we writé(n) ~ g(n) to mean
f
jim ()
= g(n)
To cover the point 11/27,...,1/n%, we needh boxes of sizes,. The remaining
points lie in the interval0,1/(n+ 1)?]. To cover such an interval, we need
boxes, where
_ 1 n
| (n+1)%,| «
and|-] is the ceiling function. Thus
N(&) =n+m~n(l+1/a).
We compute the box dimension

D — iim °9(N(&n)) _ . 10g(1+1/a)+log(n) 1

n—o —log(gy) n—e—log(a)+(a+1)logn) a+1’

Thus, by adjustingr, the box dimension of our set can be any real number between
0 and 1.

Solution 2.

(a) Boundedness s required to avoid infinite distances. (\MBiye an example.)
Closeness ensures that two sets are the same iff the distatveedn them is
zero. (Why? Explain in detail.)

(b) If Aiis the disc andB the square, theB C A, and hencéiga = 0. An elemen-
tary geometric consideration shows that

hag = h(AB) = 1— ——.

N
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Solution 3.

(a) One finds, in a straightforward manner
1 1 1
h(1,C) = & h(l,A) = 3 h(A,C) = 3

(b) We look for contraction mappings covering the detS, andA with smaller
copies of themselves. One finds

| : wi(X) = x/2 Wa(X) =x/2+1/2
C: Wi (X) = x/3 Wa(X) = X/3+2/3
A: w1 (X) = X/3 Wa(X) = 1.

Note that the IFS for the sétrequires condensation.

Hint 4. Any set lying insideS and containing the origin is at unit distance from it.
Next find sets not contained i

Solution 5.

(a) The sefAis the union of three small copies of itself, two of which aptated
clockwise (or anti-clockwise) byr/2. It follows that the IFS foA comprises
three mappings. Placing the origin in the barycentre ofAhand assuming
thatA has height 1, we find, using complex notatioa=(,/—1)

V4
CD]_(Z) - E

.z 3
CDZ(Z) — I§+Z

.z 3
ch(Z) - IE_Z

(Alternatively, one could use affine mapsk#f.)

(b) Becauseb consists of three maps, with the same contractivity facy@, it
follows that the box dimension @& is log3/log2. Since 3 is not a power of
2, this number is not an integer. Hence, by definitiams a fractal.
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(c) # -—-- utilities
PlotStuff:=style=point,symbol=point,scaling=constrained,axes=none:
z2ReIm:=z->[Re(z) ,Im(z)]:

# --—- contraction mappings and IFS
half,threq:=evalf(1/2),evalf(2/3):
£1,£2,£3:=z->zxhalf,z->I*zxhalf+threq,z->I*z*half-threq:
Phi:=S->map(f1,S) union map(f2,S) union map(£3,S):

# —---- iterations and plot

{0}:to 8 do Phi(%) od:

plot (map(z2RelIm,%) ,PlotStuff);
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