
Chaos and fractals
Exercises and solutions

Franco Vivaldi
School of Mathematical Sciences

c© The University of London, 2012 Last updated: April 26, 2013



2



Contents

1 Asymptotics 1

2 Periodic points 9

3 Stability of periodic orbits 15

4 Renormalisation 21

5 Homeomorphisms and diffeomorphisms 27

6 Doubling map 33

7 Conjugacy 39

8 Two-dimensional mappings 43

9 Fractals 47

3



4 CONTENTS



Chapter 1

Asymptotics

Let f andg be real functions. We writef (x)≺ g(x) to mean that

lim
x→∞

f (x)
g(x)

= 0 (1)

and f (x)∼ g(x) to mean that

lim
x→∞

f (x)
g(x)

= 1. (2)

Exercise 1.

(a) Prove that iff (x)≺ g(x), then f (x) = O(g(x)), asx→ ∞.
[The big-O definition requires a constant; find it using the definition of the
limit (1).]

(b) Prove that the converse is not true, by giving a counterexample.
[Is f (x) = O( f (x))?]

Exercise 2. Prove that ifg(x)→ ∞, then

f (x)≺ g(x) ⇒ ef (x) ≺ eg(x).

Is the converse implication true?
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Exercise 3. Let ε andc be real numbers with 0< ε < 1 < c. Order the following
functions according to the≺ relation

xc, cx, ccx
, xε , εx, 1, xlog(x), log(x), log(log(x)), log(x)c.

[Use Ĥopital’s rule; take logarithms and then use problem 2.]

Exercise 4. Which function grows faster

xlog(x) or log(x)x?

[How are these functions defined? Use problem 2.]

Exercise 5. Find an asymptotic expression for the function

f (x) =
x+ log(xex)

1+ log(x3)
+

x

log(x)
√

log(x)

asx→ ∞. Namely, find a functiong simpler thanf , such thatf ∼ g.
[Identify the dominant term of each numerator and denominator, than that of each
fraction, etc. (What’s the logarithm of a product?)]

Exercise 6. Prove that

(1+2x+O(x2)) = (1+2x)(1+O(x2)) x→ 0.

Exercise 7. Prove or disprove

1.
1

1+x2 = 1+O(x) x→ 0

2. cos(x)sin(x) = O(x2) x→ ∞

3. cos(x)sin(x) = O(x2) x→ 0

4. cos(O(x)) = 1+O(x2) all x

5. O(x+y) = O(x2)+O(y2) x,y→ ∞

6. e(1+O(1/n))2
= e+O(1/n) n→ ∞

7. nlog(n) = O(log(n)n) n→ ∞
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Exercise 8. Multiply (log(n) + γ + O(1/n)) by (n+ O(
√

n)) and express your
answer inO-notation.

Solutions

Solution 1. Let

(a)

lim
x→∞

f (x)
g(x)

→ 0.

Fix an arbitraryε > 0. By definition of limit, there is a real constantC, such
that, for allx > C, we have

∣

∣

∣

∣

f (x)
(x)

∣

∣

∣

∣

< ε.

This means that, for all sufficiently largex, we have

| f (x)|< ε|g(x)|,
which states thatf (x) = O(g(x)), as desired.

(b) We show that the converse statement is false. Indeed, forall functions f we
have f (x) = O( f (x)). However,

lim
x→∞

f (x)
f (x)

= 1 6= 0,

and hencef (x) 6≺ f (x).

Solution 2. Assume thatf (x) ≺ g(x), and thatg tends to infinity. We must show
that

ef (x)

eg(x)
= ef (x)−g(x)→ 0

that is, thatf (x)−g(x)→−∞.
We have

f (x)−g(x) =
f (x)−g(x)

g(x)
g(x) =

(

f (x)
g(x)
−1

)

g(x)∼−g(x)→−∞.

Alternatively, chooseε < 1. Then for all sufficiently largex, we have f (x) ≤
| f (x)|< ε|g(x)|= εg(x) (g is positive), orf (x)−g(x) < g(x)(1− ε)→−∞.

The converse implication is false. We haveex≺ e2x, butx 6≺ 2x.
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Solution 3. We find

εx≺ 1≺ log(log(x))≺ log(x)≺ log(x)c≺ xε ≺ xc≺ xlog(x) ≺ cx≺ xx≺ ccx
.

The only tricky relation isxx ≺ ccx
, which is established by taking logarithms, and

using problem 2.

Solution 4. We will show, in three different ways, that

xlog(x) ≺ log(x)x.

By definition, we have

xlog(x) = elog(x)2
log(x)x = exlog(log(x)).

We compare the exponents

log(x)2 and xlog(log(x)).

From the previous problem, we have log(x)2≺ x, and hence, log(x)2≺ xlog(log(x)).
The desired result now follows from problem 2.

Alternatively, let

f (x) =
xlog(x)

log(x)x .

We take the logarithm of both sides, and then divide by log(x), to obtain

g(x) =
log( f (x))

log(x)
=

log(x)2−xlog(x)
log(x)

= log(x)−x.

It is now clear that
lim
x→∞

g(x) =−∞ = lim
x→∞

log( f (x))

and hence

lim
x→∞

xlog(x)

log(x)x =, lim
x→∞

f (x) = 0,

as desired.
Finally, for every constantc > 1, we clearly have

cx≺ log(x)x. (2)
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Furthermore, we have
log(x)2≺ x

and hence
log(x)2≺ xlog(c).

Taking exponentials, we find

xlog(x)2 ≺ cx,

which, together with (2), gives the desired result.

Solution 5. We find

f (x) =
2x+ log(x)
1+3log(x)

+
x

log(x)3/2

=
2x

3log(x)
1+ log(x)/2x

1+1/(3log(x))
+

x

log(x)3/2

=
2x

3log(x)

[

1+ log(x)/2x
1+1/(3log(x))

+
3

2
√

logx

]

.

As x→ ∞, the quantity within square brackets tends to 1. Thus

f (x)∼ 2x
3log(x)

.

Solution 6. We expand the product

(1+2x)(1+O(x2)) = 1+2x+O(x2)+2xO(x2) = 1+2x+O(x2)+O(x3).

As x→ 0, we haveO(x2)+O(x3) = O(x2), and the result follows.

Solution 7.

1. TRUE. Sincex→ 0, we expand in Taylor series near zero

1
1+x2 = 1+x2 +x4 + · · ·= 1+O(x2) = 1+O(x).

2. TRUE. Sine and cosine areboundedfunctions, and so is their product. So we
may write sin(x)cos(x) = O(1), for all x. Now O(1) = O(x2), asx→ ∞.
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3. FALSE. Expanding in Taylor series near 0, we have

sin(x)cos(x) = (x+O(x3))(1+O(x2))

= x+O(x3)+xO(x2)+O(x3)O(x2)

= x+O(x3)+O(x3)+O(x5) = x+O(x3).

The identityx+O(x3) = O(x2) is false.

4. TRUE. Asx→ 0, the statement follows from the Taylor expansion

cos(O(x)) = 1+O(x)2 = 1+O(x2).

As x→ ∞, we have cos(x) = O(1) = O(x2).

This proof is a bit sloppy. We now develop a rigorous argument, from the
definition ofO. We have to show that the setL on the left is a subset of the
setR on the right. If a functionf belongs toL, then we can writef (x) =
cos(g(x)), where|g(x)|< c|x|, for somec. Then

1− f (x) = 2sin(g(x)/2)2≤ 1
2

g(x)2≤ 1
2

c2x2.

This shows that 1− f (x) ∈O(x2), that is, thatf (x) ∈ 1+O(x2) = R.

Thus f ∈ L⇒ f ∈ R, that is,L⊂ R, as desired.

5. TRUE. We have

O(x+y)2 = O((x+y)2) = O(x2 +y2 +2xy) = O(O(x2)+O(y2))

= O(O(x2))+O(O(y2)) = O(x2)+O(y2).

6. TRUE. First, we take care of the exponent. Asn→ ∞, we find

(1+O(1/n))2 = 1+2O(1/n)+O(1/n)2 = 1+O(1/n).

Second, we expand the exponential

e1+O(1/n) = eeO(1/n) = e(1+O(1/n)) = e+eO(1/n) = e+O(1/n).

7. TRUE. This follows from problem 1(a) and problem 4.
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Solution 8. We expand the product

(log(n)+ γ +O(1/n))(n+O(
√

n)) = nlog(n)+ γn+O(1)+O(
√

nlog(n))

+O(
√

n)+O(1/
√

n).

As n→ ∞, the dominant term isO(
√

nlog(n)), namely

O(1/n)+O(1)+O(
√

n)+O(
√

nlog(n)) = O(
√

nlog(n)).

So we find

(log(n)+ γ +O(1/n))(n+O(
√

n)) = nlog(n)+ γn+O(
√

nlog(n)).
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Chapter 2

Periodic points

Exercise 1. Let the phase spaceΣ be the setN of positive integers, and let the
dynamicsf : N→ N be given by

f (x) =

{

x/2 x even
3x+1 x odd.

(a) Prove thatf has no fixed points.

(b) Show that all pointsx≤ 10 are (eventually) periodic, and compute their tran-
sient length, i.e., the length of the pre-periodic part of the orbit throughx.
(With the help of a numerical experiment, you should be able to formulate
the ‘3x+ 1 conjecture’, one of the most famous unresolved puzzles in num-
ber theory.)

Exercise 2. We represent a real numberx as the sum of its integer and fractional
parts, namely

x = ⌊x⌋+{x}.
The integer part⌊x⌋ (also called thefloor of x) is the largest integer not exceeding
x, while the fractional part has values in the range 0≤ {x}< 1.

Now let Σ = [0,1] and

f (x) =
{{1/x} x 6= 0

0 x = 0.
Prove thatf has infinitely many fixed points, and determine all of them.
[The tricky bit is to plot the graph of the functionx 7→ {1/x}. Begin with the
restricted domain1/3 < x < 1.]

9
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Exercise 3. Let Σ = [0,1] and f (x) = 4x(1−x).

(a) Determine all fixed points.

(b) For each fixed point, determine three eventually fixed points.
[Construct pre-images of fixed points underf , and then their pre-images.]

(c) Determine all 2-cycles.
[Let Pk(x) = f k(x)− x. The 2-cycles which are not 1-cycles are the roots of
the polynomialP2(x)/P1(x). (Why isP2/P1 a polynomial? Think about it.)]

Exercise 4. Let Σ = [0,1], and let f be thetent map, defined as

f (x) =

{

2x 0 6 x < 1/2
2−2x 1/2 6 x 6 1.

(a) Construct the functionf 2.

(b) The pointx = 0 is a fixed point. Characterise the setΘ all the points inΣ that
eventually reachx = 0.

Exercise 5∗. Let Z[x] be the set of polynomials with integer coefficients, and let
f : Z[x]→ Z[x] be defined by the formula

p(x) 7→ xnp(1/x) n = deg(p)

where deg(p) is the degree ofp. Prove that all points ofZ[x] are periodic with
period dividing 2. Characterise the fixed points.

Solutions
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Solution 1.

(a) If x is even, thenf (x) < x; if x is odd, thenf (x) > x. So we cannot have
f (x) = x.

(b) We compute each orbit, until it reaches a point already computed.

orbit transient length

[1,4,2,1, . . .] (a 3-cycle) 0
[2, . . .] 0
[3,10,5,16,8,4, . . .] 5
[4, . . .] 0
[5, . . .] 3
[6,3, . . .] 6
[7,22,11,34,17,52,26,13,40,20,10, . . .] 14
[8, . . .] 1
[9,28,14,7, . . .] 17
[10, . . .] 4

So all pointsx such that 1≤ x≤ 10 are (eventually) periodic with period 3.
The ‘3x+1 conjecture’ states that all orbits end up in the above 3-cycle.

Solution 2. The pointx = 0 is a fixed point. Forx 6= 0, the fixed point
equationx = f (x) reads

{

1
x

}

= x ⇐⇒ 1
x
−
⌊

1
x

⌋

= x.

Let mbe the floor of 1/x. We write the fixed-point equation explicitly:

1
x
−m= x, where

1
m+1

≤ x <
1
m

, m= 1,2, . . . .

This givesx2 +mx−1 = 0, and hence

x =
−m±

√
m2 +4

2
.

The negative sign does not yield points ofΣ. One verifies that (do it!)

0 <
−m+

√
m2 +4

2
< 1 m= 1,2, . . . ,

giving infinitely many fixed points.
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Solution 3.

(a) The fixed-point equation yields

P1(x) = x(4x−3) = 0,

giving two fixed points:x∗ = 0 andx∗ = 3/4.

(b) Lettingy = f (x), we find

x = f−1(y) =
1±√1−y

2
.

Using f−1, we compute pre-images of fixed points. Forx∗ = 0 we find

x∗ = 0←











0 = x∗

1← 1
2 ←







2+
√

2
4

2−
√

2
4

Note that the point 1 has a single pre-image, which is the critical point of the
function f . Forx∗ = 3/4 we obtain

x∗ =
3
4
←



















3
4 = x∗

1
4 ←







2+
√

3
4

2−
√

3
4

(c) For period 2 we we must solve the equationf 2(x) = x, which yields

P2(x) = 64x4−128x3 +80x2−15x = 0.

We eliminate the fixed points. Long division gives

P2(x)
P1(x)

= 16x2−20x+5

and this polynomial has roots

x∗± =
5±
√

5
8

,

which constitute the desired 2-cycle, since they are distinct (they need not
be).
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Solution 4.

(a) Sincef is a piecewise-defined, so isf 2. It has four pieces. (Why?)

(b) We have
f−1({0}) = {0,1} f−1({1}) = {1/2}.

Let Ω ⊂ Σ be the set of all rational points in the unit interval whose denom-
inator is a non-negative power of 2. We claim thatΩ = Θ, the set of all
pre-images of the origin.

We proceed by induction on the powern of 2 at denominator. The points
0,1,1/2 are inΩ, which is the base case. Assume now that for somen > 1,
all rational of the formx = m/2n are pre-images of the origin, wherem is an
odd integer in the range 0< m< 2n. Then we have

f−1({m/2n}) = {m/2n+1,1−m/2n+1}= {m/2n+1,(2n+1−m)/2n+1} ⊂Ω.

This completes the inductive step, and we have shown thatΘ⊂Ω.

Conversely, letx = m/2n ∈ Ω be given. Ifx < 1/2 then f (x) = m/2n−1, and
if x > 1/2 then f (x) = (2n−1−m)/2n−1. Furthermore in each case the power
of 2 decreases by 1. Sof n(x) = 1, andx is a pre-image of the origin. This
shows thatΩ⊂Θ, and henceΩ = Θ.

Hint 5. Experiment with quadratic polynomials.
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Chapter 3

Stability of periodic orbits

Exercise 1. Explain concisely what is a superstable periodic orbit. Trynot to use
symbols.

Exercise 2. Let fλ (x) = x+λ sin(x), with λ > 0.

(a) Show that this map has infinitely many fixed points.

(b) Determine the range of values ofλ for which f has stable fixed points. (They
are subdivided into two families.) For what value ofλ are they superstable?

(c) Determine the nature of the fixed points atλ = 2.

Exercise 3. Let Σ = [0,1] and fµ(x) = µx(1−x) with µ ≥ 1.

(a) Show thatf has a superstable periodic orbit if such an orbit contains the point
x = 1/2.

(b) Show that atµ = 1, the map has a single fixed point, and two fixed points for
µ > 1.

(c) Determine theµ-range for whichf has a stable 1-cycle. When is such a cycle
superstable?

(d) Determine the nature of the fixed point atµ = 3. [Hint: look at f 2, near the
fixed point.]

(e) Determine theµ-range for whichf has a stable 2-cycle. When is such a cycle
superstable?

15
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Exercise 4. Let x∗ be such thatg(x∗) = 0, whereg is a differentiable real function.

(a) Show that ifg′(x∗) 6= 0, thenx∗ is a superstable fixed point for Newton’s
method.

(b) Letg′(x∗) = 0, and letk > 1 be the smallest integer for which

dkg(x∗)

dxk 6= 0.

Show thatx∗ is an attractor, but not a superstable one. Determine the multi-
plier atx∗, as a function ofk. Comment on your findings. [Hint: expand the
multiplier in Taylor series.]

Solutions

Solution 1. A periodic orbit is said to besuperstableif its multiplier is equal
to zero, that is, if one point of the orbit is a critical point.The convergence to a
superstable orbit is faster than exponential. This means that the distance of a point
from the cycle is of the order of the square of the distance of the pre-image(s) of
this point.

Solution 2.

(a) The fixed point equationλ sin(x) = 0 gives infinitely many fixed points:x∗k =
kπ, k∈ Z, independent ofλ .

(b) The multiplier isf ′(x) = 1+λ cos(x), so that

f ′(x∗k) = 1+λ cos(kπ) =

{

1+λ k even (type I)
1−λ k odd (type II).

Type I fixed points are always unstable, sinceλ is positive. Type II fixed
points are stable provided that 0< λ < 2, and superstable forλ = 1.

(a) Forλ = 2, linear analysis fails to establish the nature of type II fixed points,
so we need to include nonlinear terms. We expandf (x) nearx = π in Taylor
series, lettingx = π +δ . We find

f ′(x) = 1+2cos(x) f ′′(x) =−2sin(x) f ′′′(x) =−2cos(x)
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giving
f ′(π) =−1 f ′′(π) = 0 f ′′′(π) = 2

so that

f (π +δ ) = π−δ +
1
3

δ 3 +O(δ 5).

Thus

δt+1 = δt

(

−1+
1
3

δ 2
t +O(δ 4

t )

)

.

For sufficiently small|δt |, the quantity in parenthesis is smaller that 1 in ab-
solute value. Soδ decreases, and these points are attractors.

Solution 3.

(a) We havef ′(x) = µ(1−2x), so there is a unique critical pointxc = 1/2, which
must belong to any superstable cycle.

(b) The mapf has two fixed points, namely 0 andx∗(µ) = 1− µ−1. For µ = 1
they coincide.

(c) Forµ > 0, we havef ′(0) > 1, so 0 is unstable, whereasf ′(x∗) = 2−µ. This
means thatx∗ is stable in the range 1< µ < 3, and it is superstable forµ = 2.

(d) Whenµ = 3, we havex∗ = 2/3. Letx = x∗+δ . We compute

g(δ ) = f (δ )−x∗ = 3(2/3+δ )(1−2/3−δ ) =−δ −3δ 2.

Then
g2(δ ) = δ −18δ 3 +27δ 4 = δ (1−18δ 2 +O(δ 3)).

Thus, for sufficiently small|δ |, the quantity in parenthesis is smaller than 1,
andx∗ is an attractor.

(e) The 2-cycles are the roots of the polynomial

φ2(x) =
f 2(x)−x
f (x)−x

= µ2x2− (µ2 + µ)x+ µ +1.

Let x1 andx2 be the roots ofφ2(x). Then, looking at the coefficients ofφ2(x),
we deduce that

x1 +x2 =
µ2 + µ

µ2 =
µ +1

µ
x1x2 =

µ +1
µ2 .
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So the multiplier of the 2-cycle is given by

ω(µ) = f ′(x1) f ′(x2) = µ2(1−2(x1 +x2)+4x1x2) =−µ2 +2µ +4.

The 2-cycle is born atω(µ) = 1, or

ω(µ)−1 =−(µ +1)(µ−3) = 0

giving µ = 3, as desired (the other root is out of range). The 2-cycle is super-
stable ifω(µ) = 0, that is, ifµ = 1+

√
5 (we have chosen the positive sign

in front of the radical). This cycle bifurcates to a 4-cycle if ω(µ) =−1, that
is, if µ = 1+

√
6.

Solution 4.

(a) Let f (x) = x−g(x)/g′(x). Then

f ′(x) = 1− g′(x)2−g(x)g′′(x)
g′(x)2 =

g(x)g′′(x)
g′(x)2 .

Since, by assumption,g(x∗) = 0 andg′(x∗) 6= 0, then f ′(x∗) = 0, that is,x∗ is
superstable.

(b) Let δ = x−x∗, and leta = dkg/dxk(x∗). From Taylor’s theorem we have

g(x) =
a
k!

δ k +O(δ k+1),

whence

g′(x) =
a

(k−1)!
δ k−1 +O(δ k) g′′(x) =

a
(k−2)!

δ k−2 +O(δ k−1).

From the above we obtain

f ′(x) = f ′(x∗+δ ) =
g(x)g′′(x)

g′(x)2 =

a2

k! (k−2)!
δ 2k−2 +O(δ 2k)

a2

(k−1)!2 δ 2k−2 +O(δ 2k)

=

a2

k! (k−2)!
+O(δ 2)

a2

(k−1)!2 +O(δ 2)

.
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The value atx = x∗ is obtained by lettingδ tend to zero:

f ′(x∗) = lim
δ→0

f ′(x∗+δ ) =
(k−1)!2

k! (k−2)!
= 1− 1

k
.

The convergence is exponential rather than super-exponential, with rate 1−
k−1. Thus the convergence is maximal whenk = 2, that is, when the second
derivative ofg does not vanish at the rootx∗.
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Chapter 4

Renormalisation

Exercise 1. Explain what is a bifurcation tree. Try not to use symbols.

Exercise 2. Describe the Feigenbaum-Cvitanović equation, and the significance
of its solutions. Try not to use symbols.

Exercise 3. Consider the mapf : [0,1]→ [0,1] defined by

f (x) =







x+2x2 0≤ x < 1
2

2−2x 1
2 ≤ x≤ 1.

(a) Prove thatf has no stable fixed points.

(b) Prove thatf has no stable periodic points of any period.
[Look at the multiplier, using the chain rule of differentiation. Consider the
pointx = 1/2 separately.]

(c) Find a 2-cycle and compute its multiplier.

Exercise 4. Let f be as in the previous problem.

(a) Show that in the vicinity of 0, the functionf is anapproximatesolution to the
Feigenbaum-Cvitanović equation, in the sense that

α f ( f (x/α)) = f (x)+O(x3).

What value do you get for the scalingα in this case?

21
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(b) Improve the accuracy of the above approximation as follows. Let f̂ (x) =
f (x)+cx3, and determine the parameterc so that

α f̂
(

f̂ (x/α)
)

= f̂ (x)+O(x4).

(c) Letg : R→ R be given by

g(x) =
x

1−bx

whereb is a real constant. Show that this function is anexactsolution to
the Feigenbaum-Cvitanović equation. (This solution is not relevant to period-
doubling, since it has the normalisationg(0) = 0. It is relevant to intermit-
tency.) Relate the functiong to the functionsf and f̂ above.
[Expandg(x) in Taylor series about zero.]

Exercise 5. Consider the logistic mapfλ (x) = 1−λ x2. Prove that ifλ > 2, some
orbits from the interval[−1,1] escape to infinity.
[Look at the orbit of the critical point. First draw a picture,then from it construct a
rigorous argument.]

Exercise 6. Let Σ be the space of real analytic functionsf : R→ R, and letD :
Σ→ Σ be the differentiation operator

(D f )(x) =
d f(x)

dx
.

Show thatD has a one-parameter family of fixed points. Find a 2-cycle anda 4-
cycle. Can you find eventually periodic points?

Exercise 7. Let Σ be the space of real functionsf analytic atx= 0 and normalised
so thatf (0) = 0. LetR be the operator defined as

(R f)(x) = α f (x/α) α > 1.

Prove thatR : Σ→ Σ. Specifically, prove that(R f)(0) = 0, and that ifρ is the radius
of convergence off , then the radius of convergence ofR f is αρ. What happens to
the radius of convergence under repeated iterations ofR?
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Exercise 8. Consider the Feigenbaum-Cvitanović equation for period-doubling

(R f)(x) = α f ( f (x/α)) f (0) = 1 f (x) = f (−x) α = 1/ f (1).

Find an approximate valueα for the universal constantα∗ = 1/ f ∗(1), whereR f∗=
f ∗. Specifically, letf (x) = 1−λ x2, and determineλ such that

(R f)(x) = f (x)+O(x4)

whence the corresponding value ofα. Compare the latter withα∗.

Solutions

Solution 1. We consider a real map, depending on a parameter. Its stable cycles
are points on the real line. As the parameter changes, these points also change, and
in the parameter-coordinate plane we obtain a graph, calleda bifurcation tree.

The bottom branch of the tree corresponds to the fixed point, while the nodes
correspond to period-doubling bifurcations, where a cycleloses stability, giving
birth to a cycle of twice the period. The leaves correspond tothe accumulation
point of the period-doubling sequence.

Solution 2. We consider a renormalisation operator, acting by functioncomposi-
tion combined with scaling about the origin. The Feigenbaum-Citanovíc equation
is the fixed point equation of such operator, and its solutions are functions which are
invariant under composition and scaling. One typically looks for analytic solutions
satisfying certain normalisation conditions.

For instance, restriction to even analytic functions with aquadratic maximum at
the origin, and whose value at zero is unity, yields the universal function of the accu-
mulation point of period-doubling. The associated scalingconstant (the reciprocal
of the value of the fixed point at 1), is a universal constant.

Solution 3.

(a) The fixed points satisfy the equationf (x) = x, so there are two cases:

i) 0≤ x < 1/2. We havex+2x2 = x, hencex = 0. We find f ′(x) = 1+4x
so f ′(0) = 1, and we must look at higher-order terms. Sincef ′′(0) = 4 > 0,
we have that forx > 0, f (x) > x, and the fixed point is unstable.

ii) 1/2 < x≤ 1. We havex = 2−2x, giving x = 2/3. We havef ′(x) =−2
for all x in that range, so the fixed point is unstable.
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(b) Let (x1, . . . ,xn) be an-cycle. We may assumen > 1, since the fixed points
have been dealt with already. No point in then-cycle can be equal to 1/2,
since f 2(1/2) = 0, and so 1/2 is non-periodic (it is eventually fixed). In
particular, f is differentiable at every point in the cycle. The multiplier of the
cycle is given by the product

f ′(x1) f ′(x2) · · · f ′(xn).

For all pointx in the cycle we havex 6= 0,1/2. Thus the derivative off is
defined, and is greater than 1 in absolute value. It follows that anyn-cycle is
unstable.

(c) A 2-cycle must necessarily have one pointx1 in the interval(0, 1/2) and
another pointx2 in the interval(1/2, 1). Let x∈ (0, 1/2). Then f (x) = x+
2x2, and f 2(x) = 2−2(x+2x2). The equationf 2(x) = x gives

4x2 +3x−2 = 0 =⇒ x1 =
−3±

√
41

8

and we must choose the positive sign. Then

x2 = f (x1) =
19−

√
41

16
.

The derivative off at x1 andx2 is equal to 1−4x1 and−2, respectively. So
the multiplier of the 2-cycle is

2(1−4x1) = 5−
√

41<−1.

Solution 4.

(a) We constructf 2 using the left branchf (x) = x+ 2x2, since if x is small,
f (x) < 1/2. We find

α f ( f (α)) = x+4
x2

α
+8

x3

α2 +8
x4

α3 .

Choosingα = 2 gives

2 f ( f (x/2)) = x+2x2 +O(x3) = f (x)+O(x3)

as desired.
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(b) Letting f̂ (x) = x+2x2 +cx3 we find

2 f̂ ( f̂ (x/2)) = x+2x2 +
(

2+
c
2

)

x3 +O(x4) = f̂ (x)+O(x4).

The last equation gives

2+
c
2

= c

or c = 4. Thus the functionf̂ (x) = x+ 2x2 + 4x3 satisfies Feigenbaum-
Cvitanovíc equation near zero, up to order 4.

(c) We find

αg(g(x/α)) = αg

(

x/α
1−bx/α

)

= α

x/α
1−bx/α

1−b
x/α

1−bx/α

=
x

1−2bx/α
.

So choosingα = 2 we obtain

2g(g(x/2)) = g(x).

Note that, for sufficiently smallx, we have

g(x) =
x

1−bx
= x(1+bx+b2x2 + · · ·) = x+bx2 +b2x3 +b3x4 + · · ·

Thus the functionsf and f̂ of the previous problem are two successive ap-
proximations to this solution forb = 2.

Solution 5. Let x0 = 0, the critical point. Thenx2 = f 2(0) = f (1) = 1−λ <−1,
sinceλ > 2. We havef (−1) = 1−λ =−1−c, with c=−2+λ > 0. Furthermore,
f ′(x) = −2λ x > 1 for all x < −1. Therefore, for allx < −1 we havef (x) < g(x),
whereg(x) = x−c. An easy induction shows thatgt(x) = x−ct, and therefore, for
x <−1, we havef t(x) < x−ct.

Putting everything together, we havef t+2(0) = f t(x2) < 1−λ − ct→−∞, as
t→ ∞.
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Solution 6. We find that the functionsf (x) = αex, whereα a real number, form
a one-parameter family of fixed points ofD.

The set{e−x,−e−x} is a 2-cycle.
The set{sin(x), cos(x),−sin(x),−cos(x)} is a 4-cycle.
Let g(x) = f (x)+ p(x), where f (x) is periodic andp(x) is a polynomial. Then

g(x) is eventually periodic. The degree ofp(x) gives the transient length.

Solution 7. We have

(R f)(0) = α f (0·α) = α f (0) = 0.

Let ρ f be the radius of convergence of the series

f (x) =
∞

∑
k=0

ck xk

or
1
ρ

= limsup
k→∞

(ck)
1/k < ∞.

Let now f̂ = α f (x/α) where

f̂ (x) =
∞

∑
k=0

ĉk xk.

We find
ĉk =

ck

αk−1

and therefore

1
ρ̂

= limsup
k→∞

(ĉk)
1/k = limsup

k→∞

(

1
αk−1

)1/k

c1/k
k =

1
ρ

limsup
k→∞

1

α(k−1)/k
=

1
αρ

.

Thus
ρ̂ = αρ.

Under repeated applications ofR, the radius or convergence diverges to infinity.

Solution 8. Let f (x) = 1−λ x2. Thenα = 1/ f (1) = 1/(1−λ ), and

(R f)(x) =
1

λ −1
f (1−λ (1−λ )2x2) = 1+2λ 2(1−λ )x2 +O(x4).

Requiring that(R f)(x) = f (x)+O(x4) yields 2λ 2−2λ −1 = 0, or

λ =
1+
√

3
2

α =−1−
√

3 =−2.732. . .

to be compared with the exact valueα∗ =−2.50290. . ..
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Homeomorphisms and
diffeomorphisms

Exercise 1. Consider the following mapsf : R→ R with f (x) given by

a) −2x+7 b) −x2 c) x3

d) ex e) −2x−sin(x) f ) x+sin(x)

Decide in each case iff is a homeomorphisms, a diffeomorphisms, or neither. Iff
is a hom(diff)eo, decide if it is order-preserving or reversing.

Exercise 2. We represent the circleS1 as the interval[−1,1] with the end-points
identified. Consider the following family of mappings

fλ : S
1→ S

1 fλ (x) = λx+(1−λ )x3, λ ∈ R.

Determine the ranges of values ofλ for which fλ is i) a homeomorphism;ii) a
Cr -diffeomorphism (in which case you must determiner); iii ) neither.
[Note that both domain and co-domain are circles, so the points−1 and+1 must be
identified. In all, there aresevendistinctλ -ranges to be considered.]

Exercise 3. Construct orientation-preserving diffeomorphismsf : R → R with
the properties specified below. (First draw the graph of a function with the desired
properties. Then define it analytically, and prove that it satisfies such properties.)

(a) A single attractive fixed point atx =−1.

(b) A single fixed point atx = 0, which is neither attractive nor repelling.

27
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(c) Three fixed points —two attractors and one repeller.

Exercise 4. Construct an orientation-reversing diffeomorphismsf : R→ R with
the following properties.

(a) A single unstable fixed point atx = 1.

(b) A single symmetric 2-cycle, that is, a 2-cycle of the form{x0,−x0}.

Exercise 5. We wish to construct an orientation-reversing diffeomorphism of a
neighbourhood of the origin,all whose points are 2-cycles (we ignore the trivial
casef (x) =−x). The strategy is to buildf (x) as a power series, in such a way that
f 2(x) = x+O(xk), for increasingk.

(a) Let f (x) =−x+x2. Verify that f 2(x) = x+O(x3).

(b) Let f (x) =−x+x2 +α x3, whereα is a real parameter. Determineα so that
f 2(x) = x+O(x5).

(c) Proceed as above to determine the coefficient of terms of higher degree, up
to the largest degree you can handle (you may need Maple). Thelarger the
degree, the larger the mark.

Note: the above method yields only aformal solution, since the power series
constructed in this way may have a zero radius of convergence.

Solutions

Solution 1.

a) Order-reversing diffeo.

b) Not invertible, so neither.

c) Order-preserving homeo, but not diffeo sincef−1 is not differentiable at zero.

d) Not surjective, so neither.

e) Order-reversing diffeo.

f ) Order-preserving homeo, because the derivative vanishes.
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Solution 2. We compute

f ′(x) = λ +3(1−λ )x2 f ′′(x) = 6(1−λ )x.

As a real function, the functionf is analytic. We check its behaviour at the points
x = ±1. We find f (1) = 1 and f (−1) = −1, and since 1 and−1 are identified,
f is continuous onS1. Furthermore,f ′(1) = f ′(−1) = 3−2λ , whereasf ′′(1) =
− f ′′(−1) = 6(1− λ ). Therefore f is of classC1 but notC2, for all values ofλ ,
except forλ = 1 (see below).

Furthermore

f ′(x) = 0 ⇐⇒ x2 =
λ

3(λ −1)
.

So f ′(x) does not vanish at all, or does not vanish in the interval[−1,1], respectively,
in the ranges

0 < λ < 1 1< λ <
3
2
.

There are three critical values.
i) λ = 0. The functionf0(x) = x3 is of classC0.
ii) λ = 1. The functionf1(x) = x is of classC∞.
iii ) λ = 3/2. The functionf3/2(x) = (3x−x3)/2, is of classC0.

SUMMARY:

λ class comment

(−∞, 0) − f not invertible
0 C0 f−1 not differentiable atx = 0

(0, 1) C1 f ′′ not continuous atx = 1
1 C∞ f (x) = x

(1, 3/2) C1 f ′′ not continuous atx = 1
3/2 C1 f−1 not differentiable atx = 1

(3/2,∞) − f not invertible

Solution 3.

(a) We letΦ1(x) = f (x)−x = α (x+1), giving f (x) = x(α +1)+α. Choosing
α >−1 we ensure the orientation-preserving property, while for−2< α < 0
the pointx =−1 is an attractor. Thus−1 < α < 0.



30 CHAPTER 5. HOMEOMORPHISMS AND DIFFEOMORPHISMS

(b) The function

g(x) =
1

x2 +1
g′(x) =−2

x
(x2 +1)2 g′′(x) = 2

3x2−1
(x2 +1)3

has a single maximum atx = 0, with g(0) = 1. The second derivativeg′′(x)
vanishes atx =±1/

√
3, so that

|g′(x)| ≤ |g′(1/
√

3)|= 8

9
√

3
< 1

Moreoverg′′(0) < 0. Therefore the function

f (x) = x−1+g(x)

has the following properties:

i) f ′(x) > 0 ii) f (0) = 0 iii ) f ′(0) = 1 iv) f ′′(0) < 0.

Now, the function f is differentiable (becauseg is). i) says thatf is an
orientation-preserving diffeomorphism.ii) says thatf has a fixed point at
zero. iii ) andiv) say that such a point is neither an attractor nor a repeller.

(c) Let α be a positive real number, and let

f (x) = αx+arctan(x) f ′(x) = α +
1

x2 +1
> 0.

Then f is an orientation-preserving diffeomorphism of the real line. The fixed
point equation reads

Φ1(x) = f (x)−x = (α−1)x+arctan(x) = 0.

We haveΦ1(0) = 0, sox = 0 is a fixed point. Furthermore

Φ1(x) = αx+O(x2), x→ 0; Φ1(x) = (α−1)x+O(1), x→ ∞.

Let 0< α < 1. ThenΦ1(x) is positive for sufficiently smallx and negative
for sufficiently largex, and from the intermediate value theorem, there exists
a pointx∗ > 0 for whichΦ1(x∗) = 0. Such a point is unique, sinceΦ′′1(x) < 0
for all positivex. The third fixed pointx = −x∗ then results from symmetry:
Φ1(x) = −Φ1(−x). Since f ′(0) = α + 1 > 0, the origin is a repeller. Since
0 < f ′(x∗) = f ′(−x∗) < 1, the other points are attractors.
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Solution 4.

(a) We letΦ1(x) = f (x)− x = α(x+ 1), giving f (x) = x(α + 1)+ α. We need
α <−1 for reversing the orientation and|α +1|> 1 for a repeller, soα <−2.

(b) Consider the analytic function

f (x) =−x+ ε g(x) g(x) = (x2−x2
0)e−x2

.

We havef (±x0) = ∓x0, so{x0,−x0} is a 2-cycle. The functiong(x) is dif-
ferentiable withboundedderivative|g′(x)| < C, say. Thenf ′(x) > 0 for all
|ε|< 1/C. Sinceg(x) does not vanish at any other point,f (x) does not have
any other symmetric 2-cycle.

(Generalisation. The function

f (x) =−x+ ε g(x) g(x) =
n

∏
i=1

(x2−x2
i )e−x2

has preciselyn symmetric 2-cycles. Furthermore, for sufficiently small|ε|, f
is a diffeomorphism.)

Solution 5.

(a) We have
f 2(x) = x−2x3 +x4 = x+O(x3).

(b) Let f (x) =−x+x2 +αx3. We find

f 2(x) = x−x2−α x3 +(−x+x2 +α x3)2 +α(−x+x2 +α x3)3

= x−2(α +1)x3 +(α +1)x4 +α(−1+3α)x5 +O(x6).

Choosingα =−1 we kill both the cubic and quartic term, giving

f 2(x) = x+4x5 +O(x6) = x+O(x5).

(c) The function

f (x) =
20

∑
k=1

ck xk = −x+x2−x3 +
2
3

x4−1736x6 +
533
540

x8− 43981
12960

x10

+
1111801
68040

x12− 558379369
5443200

x14+
527406923

653184
x16

−10155352946783
1306368000

x18+
17448102987228961

193995648000
x20.
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has the property that
f 2(x) = x+O(x23).

This expansion is almost certainly divergent, as demonstrated by the the reg-
ular growth of(ck)

1/k with k.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 6 8 10 12 14 16 18 20

Figure 5.1: Growth of the coefficientsck.
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Doubling map

Exercise 1. Order the integers from 20 to 30 inclusive, using Sharkowsky’s order-
ing. Then explain what it means.

Exercise 2. Consider the doubling map.

(a) By looking at periodic binary digits, show that there arethree orbits of mini-
mal period 4. How many orbits are there of minimal period 6?
[To answer, you do not need to compute all 6-strings!]

(b) Determine all points of the 3-cycle with initial condition

x0 = .001001001001. . . = .001

as rational numbers.
[The numberx0 is the sum of a geometric series.]

(c) Do the same for the 6 cycle

x0 = .001101001101001101. . . = .001101.

(d) Divide the unit interval in four equal sub-intervals, hence determine how the
points of the periodic orbit with initial condition 1/51 are distributed among
those intervals. Do the same with the orbit with initial condition 1/13.

(e) Divide the unit interval in 16 equal sub-intervals, hence determine the binary
digits of a 16-cycle that has has one point in each sub-interval.

33
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(f) Let x be a point in ann-cycle of the doubling map

x =
∞

∑
k=1

bk2
−k xk = xk+n.

Prove that

x =
B

2n−1
where B = B(b1,b2, . . . ,bn) =

n

∑
k=1

bk 2n−k.

[Write k = sn+ r, with 1≤ r ≤ n, then split the summation into two parts.]

Exercise 3. Consider the mappingf (x) = 1−2
√

|x| on the interval[−1,1].

(a) Draw the graph off hence determinef ′. Is this map chaotic?
[This is a tricky question. Consider the orbit with initial condition x = 0 sep-
arately. You would need a positive lower bound for the Lyapounov exponent,
but that’s hard to obtain.]

(b) Theory shows that the average position of the points in a ‘typical’ non-periodic
orbit is equal to−1/3, namely that

x̄ = lim
N→∞

1
N

N−1

∑
t=0

xt =−1
3
.

Compute numerically the average position of the points of an orbit, using an
initial conditionx0 of your choice and the largest value ofN your computer
can handle1. Verify that this result is in agreement with the theory (Do not
expect great accuracy: convergence is slow.)

Solutions

Solution 1.
24⊳28⊳20⊳30⊳26⊳22⊳29⊳27⊳25⊳23⊳21

If a continuous mapf : [a,b]→ R has an orbit of one of the above periods, then it
also has orbits of all the periods that are “smaller” according to this ordering. In
particular, if the period 21 is present, so are all the other periods in the list.

1If N < 1000, then it is time to junk your computer.
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Solution 2.

(a)
0011,0001,0111.

There are 26 binary strings of length 6. Of those, 23 have minimal period 3
or 1, which must be subtracted. Furthermore 22 strings have minimal period
2 or 1, which must also be subtracted, except that in doing so we subtract the
1-strings twice. Thus the total number of strings of minimalperiod 6 is

26−23−22 +21 = 64−8−4+2 = 54.

The total number oforbits is then given by 54/6 = 9.

(b) We have

x0 = .001=
1
23 +

1
26 +

1
29 + · · ·=

∞

∑
k=1

1
8

=
1
7
.

Then

x1≡ 2x0(mod 1) =
2
7

x2≡ 2x1(mod 1) =
4
7
.

(c) We have

x0 = .001101= .000001+ .000100+ .001000

= .000001× (1+4+8)

= 13
∞

∑
k=1

(

1
26

)k

=
13
63

.

Iterating the map, we find

x0 =
13
63

, x1 =
26
63

, x2 =
52
63

, x3 =
41
63

, x4 =
19
63

, x5 =
38
63

.

(d) Letx0 = 1/51. The numerators of the points in the orbits are

1,2,4,8,16,32,13,26,1, . . .

So the orbit has period 8. We partition the unit interval intofour sub-intervals

Ik =
[

(k−1)/4, k/4
)

k = 1, . . . ,4
4
⋂

k=1

Ik = [0,1).
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We have (referring to numerators only)

{1,2,4,8} ∈ I1 {13,16} ∈ I2 {26,32} ∈ I3.

Likewise, if x0 = 1/13 we find

1,2,4,8,3,6,12,11,9,5,10,7

so the period is 12. This time there are 3 points in each interval, so the orbit
is uniform.

(e)
x0 = 0000111100101101= 259/4369.

The above string contains all 4-substrings. (There is more than one orbit with
this feature.)

(f) Let the binary representation ofx haven periodic digits

x = .b1 · · ·bn

Then

x =
∞

∑
k=1

bk2
−k bk = bk+n, ∀k > 0.

By writing k = sn+ r, with 1≤ r ≤ n, we obtainbk = br , from the above
equation, and we can write

x =
∞

∑
s=0

[

n

∑
r=1

br 2−r

]

2−ns

=
n

∑
r=1

br 2−r ·
∞

∑
s=0

(

2−n)s

=
n

∑
r=1

br 2−r 1
1−2−n

= 2n
n

∑
r=1

br 2−r 1
2n−1

=
n

∑
r=1

br 2n−r 1
2n−1

.
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Solution 3.

(a) Lety = f (x) = 1−2
√

|x|. We find

|x|=
(

1−y
2

)2

x =±
(

1−y
2

)2

.

The map is not differentiable atx = 0. We find

f ′(x) =











1
√

|x|
x < 0

− 1
√

|x|
x > 0.

The orbit of 0 of pre-periodic: 07→ 1 7→ −1 7→ −1. Apart from±1, the map
is differentiable with| f ′(x)|> 1, so the map appears to be chaotic. However,
to prove it in a straightforward way, we would need a positivelower bound
for the Lyapounov exponent. However, the quantity log| f ′(x)| is not bounded
away from zero.

(b) We compute

ΛN(x0) =
1
N

N−1

∑
t=0

xt .

# ---- the function f

f:=x->1-2*sqrt(abs(x)):

# ---- parameters

N:=1000:

nprint:=5:

# ---- initial condition

x:=1.0/3.0:

xbar:=x:

# ---- main loop

for s to nprint do

to N do

x:=f(x):

xbar:=xbar+x

od:

print(xbar/(s*N))
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od:

Selected output forx0 = 1/3:

N ΛN

1000 −0.3450708675
2000 −0.3573080697
3000 −0.3362268846
4000 −0.3128255468
5000 −0.3164218084

Convergence is slow.
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Conjugacy

Exercise 1. What is chaos? Explain it briefly, without using symbols.

Exercise 2. Write f ∼ g if f is topologically conjugate tog. Prove that∼ is an
equivalence relation, i.e.,∼ is reflexive, symmetrical and transitive.

Exercise 3. Let f andg be conjugate via a diffeomorphismh. Let f have a fixed
point atx∗.

(a) Prove that the multiplier ofg ath(x∗) is the same as that off atx∗.

(b) Formulate and prove the analogous statement for ann-cycle.

Exercise 4. Consider the following mappings

f (x) = ax g(y) = by (a 6= b).

(a) Determine conditions ona andb for which f andg are conjugate viay =
h(x) = xn, wheren is a positive integer.

(b) Use problem 2 (a) to infer that no diffeomorphism exists which conjugatesf
andg.

Exercise 5. Let f (x) = 2x(1−x), and leta,b be distinct complex numbers. Con-
struct a mapg(y) which is conjugate tof , and which has fixed points aty = a and
y = b (with the former superstable).
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Exercise 6. Consider the complex mapping

f (z) =
z2 +n

2z
n∈ Z.

(a) Show thatf is the Newton’s iteration for finding the solutions of the equation
z2−n = 0.

(b) Show thatf is conjugate to
g(w) = w2

via

w = φ(z) =
z+
√

n
z−√n

.

(c) Using the above conjugacy, what can you say about the periodic orbits of f ,
and their stability?

Solutions

Solution 1. Chaos is sensitive dependence on initial conditions, a mechanism that
causes the orbits of a dynamical system which are initially close to each other to
separate exponentially. Chaotic systems features a dense set of unstable periodic
orbits.

Formally, a system is defined to be chaotic if its Lyapounov exponent is positive.
This is the average of the logarithm of the multiplier along an orbit, which turns out
to be the same for almost all orbits.

A most prominent feature of chaotic behaviour is the emergence of probabilistic
laws, which exist alongside the extremely complex orbital motions.

Solution 2. Notation:

f
h∼g ⇐⇒ h◦ f = g◦h

Reflexivity: f∼id f .
Simmetry: f∼hg implies h−1 ◦ g = f ◦ h−1, that is,g∼h−1

f . Now h−1 is a
homeo, by definition.

Transitivity: if f ∼hg andg∼k l , then

f = h−1◦g◦h = h−1◦k−1◦ l ◦k◦h = (k◦h)−1◦ l ◦ (k◦h).
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Now, the composition of continuous bijections is a continuous bijection, so(k◦h)
is a homeomorphism, andf ∼k◦h l .

Solution 3.

(a) We haveg = h◦ f ◦h−1. Hence, lettingy = h(x), we have

g′(y) = (h−1)′(y) f ′(x)h′( f (x))

If x is a fixed point,f (x) = x, and therefore

g′(y) = f ′(x)[(h−1)′(y)h′(x)]

but the product in square brackets is unity, because

1 = (h−1◦h)′(x) = h′(x)(h−1)′(y).

(b) Let h be a smooth conjugacy betweenf andg, and let{x∗k}nk=1 be ann cycle
for f . Then{h(x∗k)}nk=1 is ann-cycle forg, with the same multiplier.

For ann-cycle, first note that iff ∼ g, then f n∼ gn. (with the same conjugacy
function —see notes). Furthermore we know (see notes) that{h(x∗k)}nk=1 is
ann-cycle forg. Then proceed as above withf n andgn in place of f andg,
respectively.

Solution 4.

(a) We have

h( f (x)) = (ax)n = g(h(x)) = bxn.

Sob = an, with n odd. This is a homeomorphism, but not a diffeomorphism.

(b) It suffices to note thatf andg both have a unique fixed point, but with differ-
ent multiplier.
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Solution 5. The mappingf as an unstable fixed point atx = 0 and a superstable
fixed point atx = 1/2.

Let h(x) = mx+q. Requiringh(0) = b andh(1/2) = a yields

h(x) = 2(a−b)+b h−1(y) =
y−b

2(a−b)
.

The equationg(y) = h( f (h−1(y))) gives

g(y) =
y2−2ay+ab

b−a

which is the desired mapping.

Solution 6.

(a) The Newton’s map for finding the roots of the equationh(z) = z2−n = 0 is

f (z) = z− h(z)
h′(z)

= z− z2−n
2z

=
z2 +n

2z
.

(b) Two mappingsf : X→ X andg : Y→Y are (topologically)conjugateif there
exists a homeomorphism (bi-continuous map)φ : X → Y such thatφ ◦ f =
g◦φ .

The mapφ is a homeomorphism of the Riemann sphere. We prove thatφ ◦
f = g◦φ .

(φ ◦ f )(z) =
z2 +n+2z

√
n

z2 +n−2z
√

n
=

(

z+
√

n
z−√n

)2

= (φ(z))2 = (g◦φ)(z).

(c) The restriction ofg to the unit circle is the doubling map, and henceg has
infinitely many periodic orbits, of every period. All these cycles are unstable,
and they are dense on the unit circle, which is the Julia set ofg. In addition,g
has two superstable fixed points, at 0 and∞,

It can be shown that a smooth conjugacy preserves periodic orbits and their
multipliers.

Because the conjugacyφ is smooth, the mapf has the same orbit structure as
g. (One verifies thatJ( f ) is R if n < 0, and

√
−1R if n > 0.)
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Two-dimensional mappings

Exercise 1. Consider the following two-dimensional map:

(x,y) 7→ ( f (x,y),g(x,y)).

Write down the equations whose solutions are the points of period dividing 3.

Exercise 2. Consider the following map ofR2:

Φ(xt ,yt) = (xt+1,yt+1)

where

xt+1 = −yt +g(xt)

yt+1 = xt−g(xt+1)

andg is a real function.
[Check the subscripts carefully.]

(a) Find a functiong for which Φ has no fixed points.
[This means that the fixed-point equation has no solutions.]

(b) Let g(x) = λ + x2. Determine the range of values ofλ for which Φ has two
distinct fixed points.
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Exercise 3. Consider the two-dimensional mapping

xt+1 = xt +
2πλ
yt+1

= xt +
2πλ

yt +sinxt
;

yt+1 = yt +sinxt .

wherex,y,λ are real numbers,λ > 0, yt 6= 0, andxt is periodic with period 2π.
(Thus the phase space is a cylinder, with the circley = 0 removed.)

(a) Show that the mapping has two infinite families of fixed points.

(b) Show that, for fixedλ , the number of (marginally) stable fixed points is at
most finite. Determine the range of values ofλ for which all fixed points are
unstable.

Exercise 4. Consider the linear map

f : C→ C f (z) = λz.

Prove that all orbits off are periodic if and only ifλ has unit modulus, and its
argument is a rational multiple of 2π.

Solutions

Solution 1.

x = f ( f ( f (x,y),g(x,y)),g( f (x,y),g(x,y)))

y = g( f ( f (x,y),g(x,y)),g( f (x,y),g(x,y))).

Solution 2.

(a) Lettingxt = xt+1 = x andyt = yt+1 = y and adding the two equations, we find

x+y =−y+x

giving y = 0, hencex = g(x). So the fixed points ofΦ take the form(x∗,0),
wherex∗ is a fixed point ofg. Therefore ifg has no fixed point, neither has
Φ. We chooseg(x) = x+1, say.
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(b) The equationg(x) = x givesλ +x2 = x, and hence

x =
1±
√

1−4λ
2

.

For two distinct real solutions, the discriminant must be positive, whence
λ < 1/4.

Solution 3.

(a) The Jacobian matrix is given by

J(x,y) =

(

1− 2πλ cos(x)
(y+sinx)2 − 2πλ

(y+sinx)2

cos(x) 1

)

.

One sees that Det(J(x,y)) = 1 (the mapping is area-preserving).

The fixed points are:

2πλ
y

= 2πk x≡ 0,π(mod 2π) k∈ Z k 6= 0.

They form two families:

(0,λ/k) (π,λ/k) k 6= 0.

(b) We compute

J(π,λ/k) =

(

1+ 2πk2

λ +2πk2

λ
1 1

)

Tr(J(π,λ/k)) = 2+
2πk2

λ
> 2

so the points(π,λ/k) are all unstable.

J(0,λ/k) =

(

1− 2πk2

λ −2πk2

λ
1 1

)

We have

Tr(J(0,λ/k)) = 2− 2πk2

λ
< 2. (1)
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For marginal stability, we require Tr(J(0,λ/k)) >−2, that is,

λ >
πk2

2

which can be satisfied for at most finitely many values ofk. The inequality
(1) implies

|y|>
√

πλ
2

.

which shows that the (marginally) stable fixed points are located sufficiently
far away from the origin.

From (1) it also follows that forλ < π/2 there are no stable fixed points at
all.

Solution 4. We havezn = λ tz0, so if z0 = zn, then|z0|= |zn|= |λ ||z0|. If z0 6= 0,
this gives|λ |= 1, as desired.

Let now
λ = e2πα .

For periodicity whenz 6= 0, we needλ n = 1. This gives 2παn = 2kπ, for some
k∈ Z. But thenα = k/n, a rational number.

Conversely, if|λ | = 1 and the argument 2πα of λ is such thatα = k/n, with
k andn coprime, thenn is the smallest natural number such thatλ n = 1, and all
non-zero points are periodic with the same periodn.



Chapter 9

Fractals

Exercise 1. Prove that the box dimension of the set

{1/nα : n∈ N} α > 0

is equal to 1/(α +1).

Exercise 2.

(a) Explain why in the definition of Hausdorff distance between two subsets of
the plane, these sets are required to be closed and bounded.

(b) Compute the Hausdorff distance between the unit disc and afilled-in square
inscribed in it (that is, the vertices of the square belong tothe unit circle).

Exercise 3. Let h(A,B) be the Hausdorff distance between two compact subsets
of R.

(a) LetC be the Cantor ternary set, letI be the closed unit interval, and letA be a
set constituted by the point 0 and the rationals 3−k, for k = 0,1, . . ., that is

A =

{

0, 1,
1
3
,

1
32 , . . .

}

.

Computeh(I ,C), h(I ,A) andh(A,C).

(b) Determine iterated function systems whose attractors are I , C andA, respec-
tively.
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Exercise 4∗. Let H (C) be the set of all closed and bounded subset ofC, with the
Hausdorff distance. LetS be the unit circle inC. Characterise the sets inH (C)
which belong to the circle of unit radius and centreC.

Exercise 5. Let A be the set of figure 9.

Figure 9.1: A fractal.

(a) After choosing coordinates, construct the iterated function systemΦ whose
fixed point isA.

(b) Compute the box dimension ofA, hence show thatA is a fractal.

(c) Write a Maple code to generate and plot this fractal.

Solutions

Solution 1. We choose boxes of sizeεn, where

εn =
1

nα −
1

(n+1)α lim
n→∞

εn = 0.
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Using the binomial theorem, we find

εn =
(n+1)α −nα

nα(n+1)α =
nα +αnα−1 +O(nα−2)−nα

nα(n+1)α

=
α +O(n−1)

n(n+1)α ∼ α
nα+1

where, if f andg are real functions, we writef (n)∼ g(n) to mean

lim
n→∞

f (n)

g(n)
= 1.

To cover the point 1,1/2α , . . . ,1/nα , we needn boxes of sizeεn. The remaining
points lie in the interval[0,1/(n+ 1)α ]. To cover such an interval, we needm
boxes, where

m=

⌈

1
(n+1)αεn

⌉

∼ n
α

and⌈·⌉ is the ceiling function. Thus

N(εn) = n+m∼ n(1+1/α).

We compute the box dimension

D = lim
n→∞

log(N(εn))

− log(εn)
= lim

n→∞

log(1+1/α)+ log(n)

− log(α)+(α +1) log(n)
=

1
α +1

.

Thus, by adjustingα, the box dimension of our set can be any real number between
0 and 1.

Solution 2.

(a) Boundedness is required to avoid infinite distances. (Why? Give an example.)
Closeness ensures that two sets are the same iff the distance between them is
zero. (Why? Explain in detail.)

(b) If A is the disc andB the square, thenB⊂ A, and hencehBA = 0. An elemen-
tary geometric consideration shows that

hAB = h(A,B) = 1− 1√
2
.
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Solution 3.

(a) One finds, in a straightforward manner

h(I ,C) =
1
6

h(I ,A) =
1
3

h(A,C) =
1
3
.

(b) We look for contraction mappings covering the setsI , C, andA with smaller
copies of themselves. One finds

I : w1(x) = x/2 w2(x) = x/2+1/2

C : w1(x) = x/3 w2(x) = x/3+2/3

A : w1(x) = x/3 w2(x) = 1.

Note that the IFS for the setA requires condensation.

Hint 4. Any set lying insideS and containing the origin is at unit distance from it.
Next find sets not contained inS.

Solution 5.

(a) The setA is the union of three small copies of itself, two of which are rotated
clockwise (or anti-clockwise) byπ/2. It follows that the IFS forA comprises
three mappings. Placing the origin in the barycentre of theA, and assuming
thatA has height 1, we find, using complex notation (i =

√
−1)

Φ1(z) =
z
2

Φ2(z) = i
z
2

+
3
4

Φ3(z) = i
z
2
− 3

4
.

(Alternatively, one could use affine maps ofR
2.)

(b) BecauseΦ consists of three maps, with the same contractivity factor 1/2, it
follows that the box dimension ofA is log3/ log2. Since 3 is not a power of
2, this number is not an integer. Hence, by definition,A is a fractal.
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(c) # ---- utilities

PlotStuff:=style=point,symbol=point,scaling=constrained,axes=none:

z2ReIm:=z->[Re(z),Im(z)]:

# ---- contraction mappings and IFS

half,threq:=evalf(1/2),evalf(2/3):

f1,f2,f3:=z->z*half,z->I*z*half+threq,z->I*z*half-threq:

Phi:=S->map(f1,S) union map(f2,S) union map(f3,S):

# ---- iterations and plot

{0}:to 8 do Phi(%) od:

plot(map(z2ReIm,%),PlotStuff);
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