

Figure 5.2.3
To calculate the fractal dimension of the subset of \mathbb{R}^{2} represented here, first apply the Collage Theorem to find a corresponding set of similitudes.
Then use Theorem 5.2.3.

Figure 5.1.6
Use the Box Counting
Theorem to estimate the
fractal dimension of the subset of $\left(\mathbb{R}^{2}\right.$, Euclidean) shown here. What other well-known fractal has the same fractal dimension?

Figure 3.10.3
Use the Collage Theoren to help you find an IFS consisting of two affine maps in \mathbb{R}^{2} whose attrac tor is close to this set.

$\stackrel{\rightharpoonup}{\omega}$

 Fig. 63. External arguments of points in M (the external argument Θ_{F} of the Feigen-
baum-Myrberg point is not ratic al; it has been proved to be transcen :ntal)

