Probabilistic aspeds of chaotic dynamics．
Unpredictability in the evolution of a chaotic orbit prompts question of probabilistic nature，such as

Given $f: \Sigma S$ with what probability we find the points of an orbit in a certain subregion $A \subset \Sigma_{i}$ ？

Mare histogroun：divide phase space into regions I_{i} of equal size ε ，and count how many iterates visit I_{i}

$$
\varphi_{i}=\frac{\# \text { iterates } \tau u I_{i}}{\text { total \# of iterates }}=\frac{N_{i}}{N}
$$

as $N \rightarrow \infty$ this gives a histogram．
As $\varepsilon \rightarrow 0$ we obtain（hopefulles） a probability density $f(x)$ ．

The probability $\mu(A)$ of finding an iterate in some subset $A \subseteq \Sigma$ is

$$
\mu(A)=\int_{A} \rho(x) d x
$$

This is the rutegrat of the density function over A ．

Def An invariant measure of a map $f: \Sigma, 5$ is a probability measure μ satisfying
$\mu(A)=\mu\left(f^{-1}(A)\right) \quad \forall A \subset \Sigma$, A measurable.
The corresponding density is called un iwverout cleusity off.

Remark We shall see that almost all orbits of a dynamical system generate the same invariant density.

Ex The tent map $f:[0,1] 5$

$$
f(x)= \begin{cases}2 x & 0 \leq x \leq 1 / 2 \\ 2(1-x) & 1 / 2<x \leq 1\end{cases}
$$

f is chaotic: $\Lambda(x)=\log 2$.
Consider an interval A with $\mu(A)=l$. $f^{-1}(A)$ consists of 2 equal intecmels $A_{+} \& A_{-}$ of length $e_{+}=e_{-}=\frac{1}{2} e$. If we choose μ tope the Lebesgue measure μ, their $\vec{A}_{-} \vec{A}_{+}$

$$
\mu\left(f^{-1}(A)\right)=\mu\left(A_{+} \cup A_{-}\right)=\mu\left(A_{+}\right)+\mu\left(A_{2}\right)=\mu(A)
$$

If A is an elementary set (onion of disjoint orgments), thew, repeating the argoment above for all segments comprising A one finds that $\mu\left(f^{-1}(A) \mid=\mu(A)\right.$. Taking the limit of sequences of elementaicy rets, one establishes the invariance of the measure. of any measurable set (we omit the details!.
Thus the Lebesgue measure is ane invariant measure of the teut map. A very siniber argument snows that this measure is also invariant for the doubling map.

We wish to express the invariance of a measure

$$
\mu(A)=\mu\left(f^{-1}(A)\right)
$$

in terns of the associated density. The above equation becomes

$$
\int_{A} \rho(x) d x=\int_{f^{-1}(A)} \rho(x) d x=\sum_{i} \int_{f_{i}^{-1}(A)} \rho(x) d x
$$

where i labels the oavious branches of the luverse function.

- In the $1-D$ cause, Petting $y=f(x)$ we have $d y=f^{\prime}(x) d x$, that is

$$
d x=\frac{d y}{f^{\prime}\left(f_{i}^{-1}(y)\right)}
$$

We obtain

$$
\int_{A} \rho(x) d x=\sum_{i}\left|\int_{f_{i}^{-1}(A)} \rho\left(f_{i}^{-1}(y)\right) \frac{d y}{f^{\prime}\left(f_{i}^{-1}(y)\right)}\right|
$$

- If A is chosen so that the sign of $f^{\prime}\left(f_{i}^{-1}(y)\right)$ does not change in $f_{i}^{-1}(A)$ we obtain

$$
\int_{A} \rho(y) d y=\sum_{i} \int_{f_{i}^{-1}(A)}^{\rho}\left(f_{i}^{-1}(y)\right) \frac{d y}{\left|f^{\prime}\left(f_{i}^{-1}(y)\right)\right|}
$$

Equating the integrands, we obtain

$$
\rho(y)=\sum_{i} \frac{\rho\left(f_{i}^{-1}(y)\right)}{\left|f^{\prime}\left(f_{i}^{-1}(y)\right)\right|}
$$

we rewrite il as

$$
\rho(y)=\sum_{x \in f^{-1}(y)} \frac{\rho(x)}{\left|f^{\prime}(x)\right|}
$$

A solution ρ to this equation is an invariant density for f.
Given a differentiable map $f: \Sigma \rightarrow \Sigma(\Sigma \subset \mathbb{R})$ we define the Perron-Frobenius operator of f ρ_{f} by

$$
\left(\int_{f} \rho\right)(y)=\sum_{x=f^{-1}(y)} \frac{\rho(x)}{\left|f^{\prime}(x)\right|}=\bar{\rho}(x) .
$$

P_{f} is made to act on the space of functions $\rho: \sum_{\rightarrow} \rightarrow \mathbb{R}$, which assume non-negative real values, are Lebesgue integrable and satisfy the normalization condition

$$
\int_{x} \rho(x) d x=1
$$

Thus any fixed point S of the P-F operator $P_{f}(\rho)=\rho$, is an invariant probability density for the map f.

Ex The Tent map $y=f(x)=\left\{\begin{array}{cc}2 x & 0 \leqslant x \leqslant 1 / 2 \\ 2(1-x) & 1 / 2<x \leqslant 1\end{array}\right.$
thus

$$
\begin{array}{rl}
0 \leq x \leq 1 / 2 & x=\frac{y}{2} \\
1 / 2<x \leq 1 & x=1-\frac{y}{2} .
\end{array}
$$

P-F operator for the tent map

$$
\begin{aligned}
(\Im \rho)(y) & =\sum_{x \in f^{-1}(y)} \frac{\rho(x)}{\left|f^{\prime}(x)\right|}=\frac{\rho(y / 2)}{\left|f^{\prime}(y / 2)\right|}+\frac{\rho(\rho-y / 2)}{\left|f^{\prime}(1-y / 2)\right|} \\
& =\frac{1}{2}(\rho(y / 2)+\rho(1-y / 2)) .
\end{aligned}
$$

Let $\rho(y)=$ c, a constant. Then

$$
(\rho \rho)(y)=\frac{1}{2}(c+c)=c=\rho(y)
$$

So such ρ is a fixed point of P-F. Normalization $\int_{0}^{1} \rho(y)=1 \Rightarrow c=1$ and $\rho(x)$ is the density function of the Lebesgue measuce.

Ex The "Ulam point" $(\lambda=2)$ of the logistic map.

$$
y=f(x)=1-2 x^{2} \quad \sum=[-1,1] .
$$

Pre-images $\quad x=\mp \sqrt{\frac{1-y}{2}}=f^{-1}(y)$

$$
\begin{gathered}
\left|f^{\prime}(x)\right|=4|x|=4 \sqrt{\frac{1-y}{2}} \\
\left(S_{f} \rho\right)(y)=\sum_{x \in f^{-1}(y)} \frac{\rho(x)}{\left|f^{\prime}(x)\right|}=\frac{1}{4 \sqrt{\frac{1-y}{2}}}\left[\rho\left(\sqrt{\frac{1-y}{2}}\right)+\rho\left(-\sqrt{\frac{1-y}{2}}\right)\right] .
\end{gathered}
$$

- We now verify that the function

$$
\rho(y)=\frac{c}{\sqrt{1-y^{2}}}
$$

is a fixed point of P-F.

$$
\rho\left(\mp \sqrt{\frac{1-y}{2}}\right)=\frac{c}{\sqrt{1-\frac{1-y}{2}}}=\frac{c \sqrt{2}}{\sqrt{1+y}} .
$$

Thus

$$
\begin{aligned}
(\rho \rho)(y) & =\frac{1}{4 \sqrt{\frac{1-y}{2}}} \frac{2 \cdot c \cdot \sqrt{2}}{\sqrt{1+y}}=\frac{c}{\sqrt{1-y} \sqrt{1+y}} \\
& =\frac{c}{\sqrt{1-y^{2}}}=\rho(y) .
\end{aligned}
$$

The function ρ is nou-negative one $[-1,1]$. Now we show it is integrable (by integrating it?).

Normalization

$$
\begin{gathered}
d \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=1 \\
c \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\left.G \arcsin (x)\right|_{-1} ^{1}=G\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=C \pi
\end{gathered}
$$

or $c=\frac{1}{\pi}$. So an invariant probability density for the logistic map at the Alan point is

$$
\rho(x)=\frac{1}{\pi \sqrt{1-x^{2}}}
$$

It turns out $\rho(x)$ is the unique invariant density of the Klan un ap (this follows from ergodiaty se below).

Ergodicity
Let $f: \Sigma D$ be a map. A set $A C \Sigma$ is said to be invariant under f if $f(A)=A$. The map f is said to be ergodic (with respect to an invariant measure μ), if Σ cannot be decomposed into two invariant subsets of positive measure

Ergodicity is measure-dependent. However, if μ is the integral of a moth donsily, one can check ergodicity using the Lebesgue measure (This will always be the case in this coarse).

The The doubling map is ergodic. $\quad(\Sigma=[0,1) ; \mu=$ Lebesgue m.)
Pf. Let $A \subset \Sigma$ be an invariant set of measure $0<\mu(A)<1$. Then, from measure preservation, we have (neglecting, possibly. zero measure jets) $f^{-1}(A)=A$, and hence $f(\Sigma \backslash A)=\Sigma \backslash A$. Fix $\varepsilon>0$, and find an open interval Δ of length 2^{-n}, for some n, such that

$$
\begin{equation*}
\mu(\Delta \backslash A)>(1-\varepsilon) \mu(\Delta)=\frac{1-\varepsilon}{2^{n}} \tag{4}
\end{equation*}
$$

Since $f^{\prime}(x)=2$, the map f doubles the measure of any set, aslong as it remains infective on that set.
Thee $\mu\left(f^{n}(\Delta \backslash A)\right)=2^{n} \mu(\Delta \backslash A)>1-\varepsilon$.
Since $f^{n}(\Delta \backslash A) \subset \sum \backslash A$ (apart from zero measure sets), we have $\mu(A)<\varepsilon$, and vince ε was arbitrary, we have $\mu(A)=0$, a contradiction.
So no such a set At exists.

An integrable function $\chi: \Sigma \rightarrow \mathbb{R}$ will be called an observable (or test function, or random variable). We use χ to peefceru measurements of a dynamical system $f: \Sigma 3$
Def The time-average of x along the orbit through x is given by

$$
\bar{X}(x)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{t=0}^{N-1} X\left(f^{t}(x)\right)
$$

Ex Let $\chi(x)=\log \left|f^{\prime}(x)\right|$. Then $\bar{\chi}(x)=\Lambda(x)$ is the Lyapounov exponent.
Def The phase-auerage of x with respect to the invariant densify ρ is given by

$$
\langle X\rangle=\int_{\Sigma} X(x) \rho(x) d x
$$

The If f is ergodic, then time and phase averages are the same almost everywhere, i.e,

$$
\bar{\chi}(x)=\langle x\rangle \quad \text { for almost all } x .
$$

- "ergodic" \& "almost everywhere" are intended witlic respect to the same invariant measure.

Thus for an ergodic map, a time-average is the same for almost all initial conditions.

Ex Computing the overage position.
Let $X(x)=x$. Thew, if f is ergodic

$$
\bar{x}=\lim _{N \rightarrow N} \frac{1}{N} \sum_{t=0}^{N-1} x_{t}=\int_{\Sigma} \rho(x) \cdot x \cdot d x=\langle x\rangle
$$

- For the doubling map: $\rho(x)=1, \Sigma=[0,1]$.

$$
\bar{x}=\langle x\rangle=\int_{0}^{1} x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}
$$

- For the Slam map: $f(x)=\frac{1}{\pi \sqrt{1-x^{2}}}, \Sigma=[-1,1]$

$$
\bar{x}=\langle x\rangle=\int_{-1}^{1} \frac{1}{\pi \sqrt{1-x^{2}}} \cdot x \cdot d x=0 \text {, } \text { since the integrand }
$$

Ex Computing the variance $\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
for the doubling map.

$$
\overline{x^{2}}=\frac{1}{N} \operatorname{Lime}_{N \rightarrow \infty} \frac{1}{N} \sum_{t=0}^{N-1} x_{t}^{e}=\langle x\rangle=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}
$$

- whence

$$
\sigma^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\frac{1}{3}-\left(\frac{1}{2}\right)^{2}=\frac{4-3}{12}=\frac{1}{12}
$$

Ex Computing the Lyopounov exponent
Let $\chi(x)=\operatorname{pog}\left|f^{\prime}(x)\right|$.

- For the doubling map: $\left|f^{\prime}(x)\right|=2$.

$$
\Lambda=\langle X\rangle=\int_{0}^{1} \log 2 d x=\log 2 \int_{0}^{1} d x=\log 2
$$

- For the clam map: $\left|f^{\prime}(x)\right|=4 x$

$$
\begin{aligned}
\Lambda & =\int_{-1}^{1} \frac{\log |4 x|}{\pi \sqrt{1-x^{2}}} d x=2 \int_{0}^{1} \frac{\log 4 x}{\pi \sqrt{1-x^{2}}} d x= \\
& =2 \log 4 \int_{0}^{1} \frac{d x}{\pi \sqrt{1-x^{2}}}+\frac{2}{\pi} \int_{0}^{1} \frac{\log x}{\sqrt{1-x^{2}}} d x \\
& =A \log 2 \cdot \frac{1}{x}+\frac{2}{\pi}\left(-\frac{\pi}{2} \log 2\right) \\
& =2 \log 2-\log 2=\log 2 .
\end{aligned}
$$

Same as the doubling map. This is no coincidence, as we shall see.

We caw now justify the observation that the invasicuct density of an ergodic map is obtained from a histogram e constacted from a single orbit.
Indeed Pet $X=X_{A}$ be the characteristic function of a set $A \subset \Sigma$

$$
X_{A}(x)= \begin{cases}1 & x \in A \\ 0 & \text { otherwise }\end{cases}
$$

If $\left(x_{0}, x_{1}, \ldots\right.$) is an orbits, then the \# of iterates that belong to A is computed as

$$
\sum_{t=0}^{N-1} X_{A}\left(x_{t}\right)
$$

For an ergodic map, we get, are.

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{t=0}^{N-1} X_{A}\left(x_{t}\right) & =\int_{\sum} X_{A}(x) \rho(x) d x \\
& =\int_{A} \rho(x) d x=\mu(A) .
\end{aligned}
$$

The LHS is the limit frequency of points that Sand in A, ie. the probability of finding a point of an orbit in A.
Thus the invariant probability measure gives that probability.

