Introduction to rencrenalization theory
Renormalization $=$ a mathematical microscope
Example. Let f be analytic a zero. Show that near zero the graph of f is a straight live.

111 agnifying the graph of a function

$\sum=\{$ functions $f: \mathbb{R} S$, analytic at zero. $\}$

$$
f(x)=\sum_{k=0}^{\infty} c_{R} x^{k} \quad \frac{1}{\rho}=\overline{\lim _{k \rightarrow \infty}}\left(c_{R}\right)^{1 / k}\langle\infty \text { or, } \rho>0 .
$$

Magnify by a factor $\alpha>1$

$$
\begin{aligned}
& R: \sum 3 \quad R f_{E}(x)=\alpha f_{E}(x / \alpha)=f_{t+1}(x) \\
& =\sum_{k=0}^{\infty} \alpha c_{k}^{(t)}\left(\frac{x}{\alpha}\right)^{R}=\alpha c_{0}^{(h)}+C_{1}^{(t)} x+\frac{c_{c}^{(t)}}{\alpha} x^{2}+\frac{C_{3}^{(t)}}{\alpha^{2}} x^{3}+\cdots+\frac{C_{k}^{(t)}}{\alpha^{(R-1}} x^{k} \\
& =c_{0}^{(t+1)}+c_{1}^{(t+1)} x+
\end{aligned}
$$

New coefficients: $\quad C_{R}^{(t+1)}=\frac{C_{k}^{(t)}}{\alpha^{k-1}} \quad \begin{aligned} & k=0,1,2 \ldots . . \\ & \\ & l=0,1,2, \ldots .\end{aligned}$
R is a linear operator on Σ

$$
\left(\begin{array}{c}
c_{l}^{(+1)} \\
c_{1}^{(n+1)} \\
c_{R}^{(+1)}
\end{array}\right)=\left(\begin{array}{ccccc}
\alpha & 0 & 0 & 0 & c_{0}^{(f)} \\
0 & 1 & 1 / 2 & 0 & c_{2}^{(t)} \\
0 & 0 & \alpha & 1 \\
0 & 0 & 0 & 1 / \alpha^{2} & c_{k}^{(t)} \\
& \infty & \text { matrix }
\end{array}\right)
$$

It is clear that under repeated applications of R, the constant coefficient $C_{0}^{(H)}=\alpha^{\kappa} C_{0} \rightarrow \infty$ if $C_{0} \neq 0$. the linear coefficient $c_{1}^{(t)}=c_{1}$ is invasicut all other coefficieculs $C_{R}^{(H)}=\left(\frac{1}{\alpha^{R-1}}\right)^{\frac{b}{r}} C_{R} \rightarrow 0$
Why does the court. coeff. blow up?

microscope is not aimed at the right point.

So most normalize in such a way that $c_{0}=0$.
$\Sigma=$ set of $f: \mathbb{R} S$ analytic at zero and withe $f(0)=0$.
then for any $f_{0} \in \Sigma$ Let $f_{t+r}=R \cdot f_{t}$
If $f_{0}(x)=c_{1} x+c_{2} x^{2}+\cdots$.
then $\operatorname{limen}_{t \rightarrow \infty} f_{t}(x)=c_{1} x$

Alteruatively seery function

$$
f^{*}(x)=c_{1} x \quad R f^{*}=f^{*}
$$

is a fixed poinl of the renamalization oporator.
So R has infinitelf many fixed points, forming a one-parewseter fadily.

Renosucclization for period-doubling

Superstable 2-cycle: $\lambda=\bar{\lambda}_{1}$

Superstable 4-cycle: $\lambda=\bar{\lambda}_{2}$

The map $f^{2}(x)$ at $\lambda=\bar{\lambda}_{2}$ resembles $f(x)$ at $\lambda=\lambda_{1}$, provided that we xafe, and change pign in both coordinote axes.

We verify this. Let $f(1)=1 / \alpha$.
At $\lambda=\vec{\lambda}_{2}$, we have

$$
\begin{aligned}
& f^{2}(0)=f(1)=1 / x \\
& f^{2}(1 / \alpha)=f^{2}(f(1))=f^{3}(1)=0
\end{aligned}
$$

Define $(R(f))(x)=\bar{f}(x)=\alpha f\left(f\left(\frac{x}{\alpha}\right)\right)$.
Then we have

$$
\begin{aligned}
& \bar{f}(0)=\alpha f^{2}(0)=\alpha \cdot \frac{1}{\alpha}=1 \\
& \bar{f}(1)=\alpha f^{2}\left(\frac{1}{\alpha}\right)=\alpha \cdot 0=0
\end{aligned}
$$

So $\bar{f}(x)$ has the 2 -syce $\{0,1\}$.
Furthermore, 0 is a critical point for \bar{f}, since

$$
\frac{d}{d x} \bar{f}(x)=\alpha \frac{d}{d x} f\left(f\left(\frac{x}{\alpha}\right)\right)=\alpha f^{\prime}\left(\frac{x}{\alpha}\right) \cdot f^{\prime}\left(f\left(\frac{x}{\alpha}\right)\right)
$$

at $x=0, f^{\prime}\left(\frac{x}{\alpha}\right)=f^{\prime}(0)=0$, $\bar{f}^{\prime}(0)=0$, and the 2 -cycle is superestalbie.
Likewise, at $\lambda=\bar{\lambda}_{3}$ we expect the superstable 8-cyde to resemble, after compositicu and. coking, to the 4-cyde at $\lambda=\lambda_{2}$, and in general

$$
\left(R\left(\frac{f}{\lambda_{k}}\right)\right)(x) \sim f_{\bar{\lambda}_{k-1}}(x)
$$

on the interval $[-1,1]$.

Look for a function f^{*} such that

$$
\left(R\left(f^{*}\right)\right)(x)=\alpha f^{*}\left(f^{*}(x / \alpha)\right)=f^{*}(x) .
$$

This is the famous Feigenbaum-Cvitanovic equation.
We ara interested in solutions that ratify (like the logistic map $\left.f(x)=1-\lambda x^{2}\right)$

$$
\begin{array}{ll}
f^{*}(x)=\sum_{k=0}^{\infty} c_{k} x^{2 k} & \text { analytic \& even } \\
f^{*}(0)=1 . & \text { normalised }
\end{array}
$$

Hence $f^{*}(0)=0$. (since f^{*} is even a differentiable).
Numerical solution. yields

$$
\begin{aligned}
f^{*}(x) \cong & 1-1.5276330 \cdot x^{2} \\
& +0.104 \gamma 152 \cdot x^{4} \\
& +0.0267057 \cdot x^{6} \\
& -0.0035274 \cdot x^{p}
\end{aligned}
$$

At $x=0$, the F-C equation becomes

$$
\begin{aligned}
& \alpha f^{*}\left(f^{*}(0)\right)=f^{*}(0) \\
& \alpha f^{*}(1)=1
\end{aligned}
$$

or

$$
\alpha=\frac{1}{f^{*}(1)}=-2.5029079 \ldots .
$$

So the coustont α is a property of the fixed

Iterate the rendrualization operator

$$
R^{2} f(x)=R \cdot R f(x)=R \alpha f^{2}(x / \alpha)=\alpha^{2} f^{4}\left(x / \alpha^{2}\right)
$$

and, in general

$$
R^{k} f(x)=\alpha^{k} f^{2 k}\left(x / \alpha^{k}\right) .
$$

For the fixed -point function $R f^{*}=f^{*}=0$

$$
\alpha^{k} f^{*^{2 k}}\left(x / \alpha^{k}\right)=f^{*}(x)
$$

and $x 0$ the iterated function is a rescaled version of the original one.

It cam be shown that Feigenbaum's constant $S=4.669 . .0$ is an eigenvalue of the operator R.

