Some general definitions

- ·f: A>B is bijective if it is both injective & surjective. In this case f -1: B → A exists.
 - · f: A-B is continuous if line f(x)-f(x), tx GA.
 - · Let f: R→R. f ∈ G' if f has r continuous derivatives.
 - $f:IR \to IR$ is a homeomorphism if it is bijective and if f, f^{-1} are both continuous. If $f, f^{-1} \in C^r$ then we say that f is a C^r -diffeomorphism.

A ct-diffeo is just called a diffeo. A co-diffeo is a homeo.

Example

 $f(\infty) = \infty^3$ is a C^{∞} map $IR \rightarrow IR$, but it is only a C° -differentiable at zero.

Example

 $f(x) = 1 - \lambda x^2$ is not even a homeo, since it is not invertible.

Mean value theorem (MVT)

If
$$f: [a,b] \to R$$
 is C^{\pm} then $\exists C \in (a,b)$ such that
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Intermediate value theorem (1VT)

If
$$f: [a,b] \rightarrow IR$$
 is continuous and $f(a) = u$
 $f(b) = v$, then given any $w \in (u,v)$,
 $f(a) = u$

(c may not be unique!)

Lemma Let $I=[a,b] \subset \mathbb{R}$. Any confirmous $f: I \to I$ has a fixed point.

Pf: Define
$$\Phi(x) = f(x) - x$$
. Since $f:I \rightarrow I$, we have $f(a) \ge a \Rightarrow \Phi(a) \ge 0$

$$f(b) \le b \Rightarrow \Phi(b) \le 0$$

g is continuous, so IVT => Ice(a,b) with \$iq)=0, i,e. f(c)=c, and c is the desired fixed point

Diffeomorphismus of IR

Let $f: \mathbb{R} \to \mathbb{R}$ be a diffeo. Its inverse f^{-1} is defined by

 $y = f(x) \iff x = f^{-3}(y)$

Thus $f^{-1}(f(x)) = 2c$, and from the chain rule

 $(f^{-1})(f(x)) \cdot f(x) = 1$ or $(f^{-1})(y) = \frac{1}{f(x)}$

For a diffeo we must have $f(x) \neq 0$ (lest (f')(y) is infinite!), and therefore, since f is continuous IVT implies that f(x) is either positive or negative for all x.

In other words, a diffeo $f:\mathbb{R} \to \mathbb{R}$ is either order preserving (>c <>c' \Rightarrow f(x) < f(x')) or order reversing (x <x' \Rightarrow f(x) > f(x')) (MUT)

order-reversing

Theorem 1.1 If f is an order-reversing differ of IR, then f has exactly one fixed point.

Pf: let B = Give f(x) and A = Give f(x) $x \to -\infty$ (A, B, could be $\mp \infty$). Then B > A since f reverses the order. Now let $\Phi(x) = f(x) - x$ so that $\text{Give } \Phi(x) = -\infty$ $\text{Since } \Phi(x) = -\infty$

and therefore Ic with \$(c) = 0 → f(c) = c.

To prove uniqueness, suppose f(c) = c, f(d) = d.

with c < d, say. Then f(c) > f(d) since

f is order-towersing. But since c & d are

fixed points, this implies c > d, a contradiction.

Remark If fis o	rder-preserving, there may be
any number of fin	ced points
hone	2 - many

If their multiplier is \$1, they must occur in an alternating attracting-repelling sequence

By Pabeling the marginal cases as follows

them A is aways followed by R, & viceversa

Thm 1.2 An order-preserving diffeo f: R > R
has no periodic orbits of period n > 1.

Pf: Let $\{x_0, x_1 = f(x_0), \dots, s\}$ be the orbit of x_0 , and let $f(x_0) \neq x_0$.

Case! $x_1 > x_2 > x_3 \Rightarrow f(x_1) > f(x_0) \Leftrightarrow x_2 > x_1$ repeating the argument, we get $x_0 < x_1 < x_2 < \dots < x_n \Rightarrow x_n \neq x_0.$

Case 2 $x_1 < x_0 \Rightarrow f(x_0) \neq f(x_0) \Rightarrow x_2 < x_1$ thus

thus $x_0 > x_1 > \cdots > x_n$. Hence $x_n \neq x_0$.

What periods can be have in the order-reversing case? we have I fixed point, and we can have any number of 2-cycles (eq., f(x) = -x).

However,

Thm 1.3 An order-reversing differ f: R > 1R has no periodic orbit of period n > 2.

Pf: f differ with $f(x) < 0 \Rightarrow$ $f^{2} \text{ differ with } (f^{2})/x > 0.$

Indeed f^{ϵ} has inverse f^{-2} and $f^{\epsilon}(x) = f'(f(x))f(x) > 0$.

So f^2 has no n-cycles with n > 1, whence f has no 2n-cycles with n > 1.

If n is odd, then fr is a diffeo with fixed point (thm 3.1), which is necessarily the fixed point of f.

Summai	ry Diffeo	Diffeo f:IR -> IR		
	fixed pls	e-cycles	n-cycles, n>z	
f(30) > 0	cerbitracy	houe	houe	
f/20<0	J unique	ar bitrary	noue	
(,				

The behaviour caube much more complicated if

- · we relax the condition of bijedivity
- · We increase the dimension.