Souse general definitions

- $f: A \rightarrow B$ is bijective if it is both infective \& augective. In this case $f^{-1}: B \rightarrow A$ exists.
- $f: A \rightarrow B$ is continuous if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right), \forall x_{0} \in A$.
- Let $f: \mathbb{R} \rightarrow \mathbb{R} . f \in G^{r}$ if f has r continuous derivatives.
- $f: \mathbb{R} \rightarrow \mathbb{R}$ is a homeomorphism if it is bijective and if $f_{1} f^{-1}$ are both continuous. If $f, f^{-1} \in C^{r}$ then we say that f is a c^{r}-diffecuorphisun.

A C. -differ is just called a differ.
A c^{0}.differ is a homed.
Example

$$
f(x)=x^{3} \text { is a } c^{\infty} \operatorname{map}_{1} \mathbb{R} \rightarrow \mathbb{R} \text {, beet it is }
$$ only a c^{0}-differ, as f^{-1} is not differentiable al zero.

Example
$f(x)=1-\lambda x^{2}$ is not even a homed, since if is not invertible.

Mean value theorem (MVT)
If $f:[a, b] \rightarrow \mathbb{R}$ is c^{1} then $\exists c \in(a, b)$ suck that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Intermediate value theorem (IVT)
If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(a)=u$ $f(b)=v$, then given any $w \in(u, v)$, $\exists c \in(a, b)$ suck that $f(c)=W$
 (c may not be
unique!)

Lemma Let $I=[a, b] \subset \mathbb{R}$. Any continuous $f: I \rightarrow I$ has a fixed polut.

Pf: Define $\Phi(x)=f(x)-x$. Since $f: I \rightarrow I$, We have $f(a) \geq a \quad \Phi \quad \Phi(a) \geq 0$

$$
f(b) \leq b \quad \Rightarrow \quad \Phi(b) \leq 0
$$

g is continuous, so IVT $\Rightarrow \exists \in \in(a, b)$ with $\Phi(a)=0$, i,e. $f(c)=c$, and c is the desired fixed point

Diffeomorphismus of \mathbb{R}
let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a diffed. Its inverse f^{-t} is defined by

$$
y=f(x) \quad \Leftrightarrow x=f^{-1}(y)
$$

Thus $f^{-1}(f(x))=x$, and from the chain rule

$$
\left(f^{-1}\right)^{\prime}(f(x)) \cdot f^{\prime}(x)=1 \text { or }\left(f^{-1}\right)^{\prime}(y)=1 / f^{\prime}(x)
$$

For a differ we must have $f^{\prime}(x) \neq 0$ (Rest $\left(f^{-1}\right)^{\prime}(y)$ is infinite! !, and therefore, since f iscontivmons IVT implies that $f^{\prime}(x)$ is cither positive or negative for all x.
In other words, a differ $f: \mathbb{R} \rightarrow \mathbb{R}$ is either order preserving $\left(x<x^{\prime} \Rightarrow f(x)<f\left(x^{\prime}\right)\right)$ or order reversing

$$
\left(x<x^{\prime} \Rightarrow f(x)>f\left(x x^{\prime}\right) \quad\right. \text { (MUT) }
$$

 order-preserving

order-reversing

Theorem 1. 1 If f is au ordor-reversing diffeo of \mathbb{R}, then f has exactly one fixed point.

Pf: Let $B=\lim _{x \rightarrow-\infty} f(x)$ and $A=\lim _{x \rightarrow \infty} f(x)$ $(A, B$, could be $\mp \infty)$. Then $B>A$ since f reverses the order. Now Pet $\Phi(x)=f(x)-x$ so that

$$
\lim _{x \rightarrow-\infty} \Phi(x)=-\infty \quad \lim _{x \rightarrow \infty} \Phi(x)=-\infty
$$

and therefore $\exists c$ with $\Phi(c)=0 \Rightarrow f(c)=c$.
To prove uniqueness, suppose $f(c)=c, f(d)=d$. with $c<d$, andy. Then $f(c)>f(d)$ vince f is order-toversing. But oivice c d are fixed points, this implies $c>d$, a contradiction.

Remark If f is order-presersing, there may be anynumber of fixed points'

If their multiplier is $\neq 1$, they must occur in an alternating attracting-repelling sequence

By labeling the marginal cases as follows

then A is aw rays followed by R, \& viceversa

The 1.2 An order-preserving diffeo $f: \mathbb{R} \rightarrow \mathbb{R}$ has no periodic orbits of period $n>1$.
Pf: Let $\left\{x_{0}, x_{1}=f\left(x_{0}\right), \ldots\right\}$ be the orbit of x_{0}, and let $f\left(x_{0}\right) \neq x_{0}$.
Cases $x_{1}>x_{0} \Rightarrow f\left(x_{1}\right)>f\left(x_{0}\right) \Leftrightarrow x_{2}>x_{1}$ repeating the argument, we get

$$
x_{0}<x_{1}<x_{2}<\cdots<x_{n} \Rightarrow x_{n} \leqslant x_{0} .
$$

Case $2 x_{1}<x_{0} \Rightarrow f\left(x_{a}\right)<f\left(x_{0}\right) \Leftrightarrow x_{2}<x_{1}$
thus

$$
x_{0}>x_{1}>\cdots>x_{n} \text {. Hence } x_{n} \neq x_{0} \text {. }
$$

What periods can we have in the order-reversing case? We have 1 fixed point, and we can have any number of 2-aycles (eg', $f(x)=-x)$.
However.
Thu 13. An onder-reversing diffeo $f: \mathbb{R} \rightarrow \mathbb{R}$ has no periodic orbit of period $n>2$.
Pf: f differ with $f^{\prime}(x)<0 \Rightarrow$

$$
f^{2} \text { differ with }\left(f^{2}\right)^{\prime}(x)>0
$$

Indeed f^{2} has iwerse f^{-2} and

$$
f^{\prime}(x)=f^{\prime}(f(x)) f^{\prime}(x)>0 .
$$

So f^{2} has no n-cycles with $n>1$, whence f has no $2 n$-cycles with $n>1$.

If n is odd, thew f^{n} is a differ with $f^{n}(x)<0$, and so f^{n} has a unique fixed point (thu 3.1), which is necessarily the fixed point of f,

Summary Diffeo $f: \mathbb{R} \rightarrow \mathbb{R}$

	fixed pts	2 -cycles	n-cycles, $n>2$
$f^{\prime}(x)>0$	arbitrary	none	none
$f^{\prime}(x)<0$	unique	arbitrary	none

The behaviour caube nude more complicated if

- We relax the condition of bijectivity
- we increase the dimension.

