Def. Let Σ be any set. A discrete-time dy nasenical system on Σ is given by a function $f: \Sigma D$. If $x_{0} \in \sum$, then the sequence on Σ

$$
x_{0}, x_{1}, x_{2}, \ldots
$$

where

$$
x_{t+1}=f\left(x_{t}\right)
$$

is called the (forward) orbit through t x_{0}.
Notation $f^{t}(x)=f\left(f^{(-1}(x)\right)$ with $f^{0}(x)=x \Rightarrow f^{0}=f$. and $x_{t}=f^{-}\left(x_{0}\right)$.
REMARKS

- \sum and f are completely arbitrary.
- The system (1) always defines a discrete-Time dynamical system on $\sum_{1}=\mathbb{R}^{N}$, where f is the function mapping any $X_{0} \in \mathbb{R}^{N}$ to $X(1)$ where $X(t)$ is the orbit through x_{0}.

- If f is one-toone \& onto, thew the dynamical system (2) is invertible, ide., every point has a backward orbit as mel

$$
\cdots x_{k^{2}} x_{k^{1}} \overbrace{x^{\prime}-1}^{f} x_{x_{1}}^{f} x_{2} \ldots
$$

Def A point x is a fixed point if $x=f(x)$. The orbit through x is periodic with period n (' n-cycle") if $f^{n}(x)=x$. The smallest toe period is called the minimal period.
A point x is eventually periodic if $f^{t}(x)$ is periodic for some $E>0$.

$\underline{\varepsilon x}$ Let $\Sigma=\mathbb{R}$ and $f(x)=1-x^{2}$
Fixed points: $\quad f(x)=x \Rightarrow x^{2}+x-1=0$

$$
x=\frac{-1 \mp \sqrt{5}}{2}
$$

$$
f(0)=1, f(1)=0 \quad \text { so } \quad\{0,1\}
$$

is a 2 -cycle

$$
f(-1)=0 \text {, so }-1
$$

is eventually periodic and so is $\frac{1+\sqrt{5}}{2}$.

Define $P_{n}(x)=f^{n}(x)-x$. Then the solutions of the equation $P_{n}(x)=0$ are the d-cycles, foo some divisor d of n.

Ex The Newton's method.
Solve $g(x)=0, g: \mathbb{R} \Phi$ differentiate

line Tangent to g at x_{t} :

$$
\Rightarrow \quad y-g\left(x_{t}^{\prime}=g^{\prime}\left(x_{t}\right)\left(x-x_{t}\right)\right.
$$

Let $y=0$ \& solve for $x=x_{t+1}$:

$$
x_{t+1}=x_{t}-\frac{g\left(x_{t}\right)}{g^{\prime}\left(x_{t}\right)}=f\left(x_{t}\right) \quad \begin{aligned}
& \text { a discrete time } \\
& \text { dynamical system }
\end{aligned}
$$

$$
f\left(x^{*}\right)=x^{*}-\frac{g\left(x^{*}\right)}{g^{\prime}\left(x^{*}\right)}
$$

Now $g\left(x^{*}\right)=0$, , if $g^{\prime}\left(x^{*}\right) \neq 0$ then $f\left(x^{*}\right)=x^{*}$
Conversely, if $f\left(x^{*}\right)=x^{*} \Rightarrow \frac{g\left(x^{*}\right)}{g^{\prime}\left(x^{*}\right)}=0$
So if $g^{\prime}(x)=0$ then $g(x)=0$ iff x is a fixed point of the Newton's method.
Lemma: Let f be invertible. Then every pre-periodic point is periodic.
Proof: x_{0} pre-periodic $\Rightarrow \exists K$, L with $x_{K+L}=x_{k} \Rightarrow$

$$
\begin{aligned}
& f^{k+L}\left(x_{0}\right)=f^{k}\left(x_{0}\right) \\
& \left(f^{-1}\right)\left(f^{k+L}\left(x_{0}\right)\right)=\left(f^{-1}\right)^{k} f^{k}\left(x_{0}\right)
\end{aligned}
$$

or $f^{L}\left(x_{0}\right)=x_{0} \Rightarrow x_{0}$ is periodic

Def A, set A is an attractor for f, if there exists a neighbourhood U of A and a positive integer N suck that $f^{N}(U) \subset V$ and

$$
A=\bigcap_{E=1}^{\infty} f^{t}(v)
$$

The set U is called a fundamental neighborhood of A.
An attractor is usually required to be compact (~ close \& bounded).
Def. The basin of attraction of A is the open set

$$
\tau_{t>0}\left(G^{H}\right)^{-1}\left(U_{0}\right)
$$

Ex Let $f_{\lambda}(x)=\lambda x \quad A=\{0\}$ is invariant. $x_{t+1}=\lambda x_{t}$ gives $x_{t}=\lambda^{t} x_{0}$. For $|\lambda|<1$ we have $x_{t} \rightarrow 0,20\{0\}$ is au attractor (with $\tau=(-1,1)$, say $)$. The basie of att. is \mathbb{R}.
When $|\lambda|=1$ all ps are periodic (fie dpts for $\lambda=1$ and 2 -cycles for $\lambda=-1$). When $|\lambda|>1$ the origin is a repeller.
when $\lambda=0$ all ptsare eventually fixed.

1-Dimensional dynamics
Stability of n-cycles. We deal with fixed pts first.
Let $f\left(x^{*}\right)=x^{*}$ and f smooth at x^{*}.
Let $x_{t}=x^{*}+\delta_{t} \quad\left|\delta_{t}\right| \ll 1$
Expand fin taylor series at x^{*} :

$$
\begin{array}{r}
x_{t+1}=f\left(x_{t}\right)=f\left(x^{*}+\delta_{t}\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) \delta_{t}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) \delta_{t}^{2} \\
\forall \\
+O\left(\delta_{t}^{3}\right) \\
x^{*} \\
\delta_{t+1}+x^{*}=x^{*}+f^{\prime}\left(x^{*}\right) \delta_{t}^{*}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) \delta_{t}^{2}+O\left(\delta_{t}^{3}\right)
\end{array}
$$

This gives

$$
\delta_{t+1}=f^{\prime}\left(x^{*}\right) \delta_{t}+O\left(\delta_{t}^{2}\right)
$$

and so x^{*} is an attractor if $\left|f^{\prime}\left(x^{*}\right)\right|<1$,
If $f^{\prime}\left(x^{*}\right)=0$ the rate of comergeuce to the attractor is faster, being determined by bigher-order (typically quadratic) Teruc's

$$
\delta_{t+1}=\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) \delta_{t}^{2}+O\left(\delta_{t}^{3}\right)
$$

the attrador is superstable, ie., the number of common digits of x_{t} and x^{*} doubles at each iteration.
 a euperstiable fixed point

If $\left|f^{\prime}\left(x^{x}\right)\right|=1$ we most consider higher-ordee teams.
Let k be the smallest integer greater than 1 for which $\frac{d^{k} f\left(x^{k}\right)}{d x^{k}} \neq 0$. (We may assume that suck integer exists, Pest f is linear and the problene is trivial.)

Then we have
i) $f^{\prime}\left(x^{*}\right)=1$

$$
\begin{aligned}
\delta_{t+1} & =\delta_{t}+\frac{1}{k!} f^{(R)}\left(x^{*}\right) S_{t}^{k}+o\left(\delta_{t}^{k+1}\right) \\
& =\delta_{t}(\underbrace{1+\frac{1}{R!} f^{(k)}\left(x^{*}\right) \delta_{t}^{k-1}+o\left(\delta_{t}^{k}\right)}_{\Lambda})
\end{aligned}
$$

4 cases:

ii) $f^{\prime}\left(x^{x}\right)=-1$

k	$f^{(k)}\left(x^{x}\right)$	Λ
odd	>0	>-1
odd	<0	<-1

for Keven, one must look at higher-order teams.
stability of n-cycles
x^{*} belongs to an n-cycle of $f \Leftrightarrow x^{*}$ is a fixed pt of f^{n}, hence
$\left|\left(f^{n}\right)^{\prime}\left(x^{*}\right)\right|<1 \Leftrightarrow$ the n-cyde containing x is au attractor.
Let $\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right\}$ be an 12 -cycle. The chain rule of differentiation then gives

$$
\begin{aligned}
& \left(f^{n}\right)^{\prime}\left(x_{1}^{*}\right)=\left(f^{n-1} \circ f\right)^{\prime}\left(x_{1}^{*}\right)=f^{\prime}\left(x_{1}^{*}\right)\left(f^{n-1}\right)^{\prime}\left(x_{2}^{*}\right) \\
& =f^{\prime}\left(x_{ \pm}^{*}\right) f^{\prime}\left(x_{2}^{*}\right)\left(f^{n-2}\right)^{\prime}\left(x_{2}^{*}\right)=\prod_{t=1}^{n} f^{\prime}\left(x_{t}^{*}\right) .
\end{aligned}
$$

It follows that the derivative of f^{n} is the same at every point of the cycle, and is called the multiplier of the cycle.
In porticulare, an n-cycle is sexperstable if $f^{\prime}(x)$ vanishes at one, of its points.
Apoint x for which $f^{\prime}(x)=0$ is called a critical point.

superstable y les.

