
MAS111 Convergence and Continuity

Key Objectives

At the end of the course, students should know the following topics and be
able to apply the basic principles and theorems therein to solving various
problems concerning convergence of sequences and continuity of functions.

Real numbers: definition of algebraic and transcendental numbers, proving basic
inequalities, finding supremum and infimum of a set of real numbers, stating the com-
pleteness axiom.

Sequences: definition of limit, proving results concerning limits of sequences, find-
ing the limit of a bounded monotone sequence, proof and application of the sandwich
theorem, proof and application of the Bolzano-Weierstrass Theorem, calculation of
limits.

Series: definition of convergence, application of the comparison test, root test and
ratio test for convergence, geometric and harmonic series, alternating series and abso-
lute convergence, power series, finding radius and domain of convergence, stating the
power series expansion of sin x, cos x and exp x, calculation of sums of simple series.

Real functions: definition of the limit of a function, definition of one-sided limits,
use of the sandwich theorem, calculation of limits of functions.

Continuous functions: definition of continuity, derivation of basic properties of
continuous functions on closed intervals, statement and application of the Intermedi-
ate Value Theorem, proving results concerning the roots of polynomials.
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1 Real Numbers

R is a complete ordered field.

Axioms for addition:

A1. ∀x, y ∈ R, x + y = y + x.

A2. ∀x, y, z ∈ R, (x + y) + z = x + (y + z).

A3. ∃0 ∈ R, called zero, such that x + 0 = x for all x ∈ R.

A4. ∀x, ∃(−x) ∈ R such that x + (−x) = 0.

Axioms for multiplication:

M1. ∀x, y ∈ R, xy = yx.

M2. ∀x, y, z ∈ R, (xy)z = x(yz).

M3. ∃1 ∈ R, called one, such that x1 = x.

M4. it 1 6= 0 and ∀x ∈ R\{0}, ∃x−1 ∈ R such that xx−1 = 1.

Distributive law:

∀x, y, z ∈ R, x(y + z) = xy + xz.

Axioms for order:

O1. ∀x, y ∈ R, exactly one of the following holds:

x < y, x = y, y < x.

02. ∀x, y, z ∈ R,
x < y and y < z =⇒ x < z.

03. ∀x, y, z ∈ R,
x < y =⇒ x + z < y + z.

04. ∀x, y ∈ R,
0 < x and 0 < y =⇒ 0 < xy.

Completeness axiom:

If A is a non-empty subset of R and has an upper bound,
then it has a least upper bound.
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Theorem 1.1. (Archimedes Principle ) Let x, y ∈ R and let x > 0. Then there exists
n ∈ N such that nx > y.

Corollary 1.2. Let x, y ∈ R be such that x < y. Then there exists a rational number
r ∈ R such that x < r < y.

Corollary 1.3. There exists a unique number ` ∈ R such that ` > 0 and `2 = 2.

Proposition 1.4. Let A be a non-empty subset of R with an upper bound. Let ` ∈ R.
The following conditions are equivalent:

(i) ` = sup A;

(ii) ` is an upper bound of A such that ∀ε > 0, ∃a ∈ A with `− ε < a.

Proposition 1.5. Let A be a non-empty subset of R with a lower bound. Let ` ∈ R.
The following conditions are equivalent:

(i) ` = inf A;

(ii) ` is a lower bound of A such that ∀ε > 0, ∃a ∈ A with a < ` + ε.

Proposition 1.6. Let p/q be a rational root of

anx
n + an−1x

n−1 + · · ·+ a1x + ao = 0

where n ≥ 1 and a0, · · · , an ∈ Z with a0an 6= 0. If p and q are coprime, then p|a0 and
q|an.

Question 1.7. What is an algebraic number? a transcendental number?

Question 1.8. What are the sup and inf of{
x

1 + x2
: x ∈ R

}
?

Question 1.9. Show that

(i) |x− a| < b ⇐⇒ a− b < x < a + b.

(ii) (1 + x)n ≥ 1 + nx for all n ∈ N and x ≥ −1.

Theorem 1.10. Let A and B be non-empty bounded subsets of R. Then

(i) sup(A + B) = sup A + sup B ;

(ii) inf(A + B) = inf A + inf B.

Theorem 1.11. (Arithmetic-Geometric mean inequality) For any non-negative real
numbers a1, a2, · · · , an, we have

(a1a2 · · · an)
1
n ≤ a1 + a2 + · · ·+ an

n
.
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2 Sequences

A (real) sequence is a function x : N −→ R. We study the behaviour of x(n) for
‘large’ n. We often write xn for x(n) and denote a sequence x : N −→ R by listing
its image:

x1, x2, x3, · · · , xn, · · ·

or by
(xn)∞n=1 , (xn)n∈N

or simply, (xn).

Definition 2.1. Let (xn) be a sequence. We say that (xn) converges to the limit ` if

∀ε > 0, ∃N ∈ N such that n ≥ N =⇒ |xn − `| < ε

in which case, we say that the sequence (xn) is convergent or, converges. We say that
(xn) is divergent or diverges if it is not convergent.

Theorem 2.2. A sequence can converge to at most one limit.

Notation We denote the limit of (xn), if it exists, by

lim
n→∞

xn.

We also write
xn → ` as n →∞ or simply, xn → `

to mean that (xn) converges to the limit `.

Theorem 2.3. lim
n→∞

1

n
= 0.

Proof. By Archimedes Principle.

A sequence (xn) is said to be bounded above if there exists some constant K ∈ R
such that xn ≤ K for all n.

A sequence (xn) is said to be bounded below if there exists some constant K ∈ R
such that xn ≥ K for all n.

A sequence (xn) is said to be bounded if it is both bounded above and below which
is equivalent to saying that there exists some constant K ∈ R such that |xn| ≤ K for
all n.

Theorem 2.4. Every convergent sequence is bounded.
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Example 2.5.

(i) Theorem 2.4 does not say that a bounded sequence converges, indeed, the
following sequence is bounded and divergent:

1, 0, 1, 0, · · · .

(ii) The sequence 1, 2, 3, · · · , n, · · · diverges because it is unbounded.

Theorem 2.6. Let (an) → a and (bn) → b. Then we have

(i) an + bn → a + b;

(ii) an − bn → a− b;

(iii) anbn → ab;

(iv)
an

bn

→ a

b
if bn, b 6= 0.

Theorem 2.7. (Sandwich Theorem) Given that an ≤ xn ≤ bn and that both sequences
(an) and (bn) converge to `, then the sequence (xn) also converges to `

Example 2.8. Let 0 < a < 1. Then an → 0.

Definition 2.9. A sequence (an) is called increasing if n ≥ m =⇒ an ≥ am; it is
called decreasing if n ≥ m =⇒ an ≤ am. Further, (an) is called monotone if it is
either increasing or decreasing.

Example 2.10. Given a > 0, the sequence n
√

a is a monotone sequence. What is
the limit lim

n→∞
n
√

a ?

Theorem 2.11. Let the sequence (an) be increasing and bounded above. Then it
converges, moreover, we have

lim
n→∞

an = sup{an : n ∈ N}.

Theorem 2.12. Let the sequence (an) be decreasing and bounded below. Then it
converges, moreover, we have

lim
n→∞

an = inf{an : n ∈ N}.

Example 2.13. The sequence

√
3,

√
3 +

√
3,

√
3 +

√
3 +

√
3, . . .

converges. What is the limit?
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Example 2.14. The sequence ((
1 +

1

n

)n)∞
n=1

is increasing and bounded by 3. Therefore it converges and the limit is denoted by e.

Theorem 2.15. Given an → a as n →∞, we have

a1 + · · ·+ an

n
→ a.

Definition 2.16. Let (xn) be a sequence. A subsequence of (xn) is any sequence of
the form

xn1 , xn2 , xn3 , · · · , xnk
, · · ·

where nk ∈ N and

n1 < n2 < n3 < · · · < nk < · · · .

Example 2.17. (i) (xn) is a subsequence of itself.

(ii) (x2n) and (x2n+1) are subsequences of (xn).

(iii) x2 , x5 , x6 , x23 , x31 , x31 , x31 , x31 , x31 , · · · is not a subsequence of (xn).

(iv) 1 , 3 , 5 , 5 , 5 , 6 , 7 , 8 , · · · is a subsequence of
1 , 2 , 3 , 4 , 5 , 5 , 5 , 5 , 5 , 6 , 7 , 8 , · · · .

Proposition 2.18. Let (xn) be a sequence. Given that both subsequences (x2n) and
(x2n+1) converge to the same limit `, we also have xn → ` as n →∞.

Theorem 2.19. Every sequence has a monotone subsequence.

Theorem 2.20. (Bolzano-Weierstrass Theorem) Every bounded sequence has a
convergent subsequence.

Definition 2.21. A sequence (xn) is called a Cauchy sequence if

∀ε > 0 ,∃N ∈ N such that n, m ≥ N ⇒ |xn − xm| < ε.

Notation: lim
n,m→∞

|xn − xm| = 0.

Theorem 2.22. (Cauchy Criterion for Convergence) A real sequence (xn) is
convergent if, and only if, it is a Cauchy sequence.
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3 series

The symbols
∞∑

n=1

an = a1 + a2 + · · ·+ an + · · · ,

called a (real) series, denote the (real) sequence (sn) of partial sums, where

sn = a1 + a2 + · · ·+ an

is called the n-th partial sum of the series. We say that a series
∞∑

n=1

an converges or,

is convergent, if the sequence (sn) of partial sums converges, in which case, the limit
of (sn) is called the sum of the series and we write

∞∑
n=1

an = lim
n→∞

sn = lim
n→∞

(a1 + a2 + · · ·+ an) .

A series
∞∑

n=1

an is said to be divergent or, diverge, if it is not convergent.

CAUTION. Do not confuse the sequence

a1 , a2 , · · · an , · · ·

with the series
a1 + a2 + · · ·+ an + · · · ,

the latter is the following sequence :

a1 , a1 + a2 , a1 + a2 + a3 , · · · , a1 + a2 + · · ·+ an , · · · !!!

Example 3.1. The series

∞∑
n=1

1

2n
=

1

2
+

1

22
+ · · ·+ 1

2n
+ · · ·

converges and the sum is 1. We compute the n-th partial sum :

sn =
1

2
+

1

22
+ · · ·+ 1

2n
=

1

2

(
1− 1

2n

1− 1
2

)
= 1− 1

2n

which converges to 1 as n →∞, that is,
∞∑

n=1

1

2n
= 1.
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Example 3.2. The series
∞∑

n=1

rn

converges for |r| < 1. What is the sum?

Example 3.3.
∞∑

n=1

1

(n + 1)(n + 2)
=

1

2
.

Example 3.4. The harmonic series

∞∑
n=1

1

n

is divergent. Indeed, its sequence (sn) of partial sums is unbounded and hence
diverges. For any K > 0, pick m > 2K, then for any n > 2m, we have

sn =

(
1 +

1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · · +

(
1

2m−1 + 1
+ · · ·+ 1

2m

)
+ · · ·+ 1

n

>
1

2
+ (2)

(
1

4

)
+ (4)

(
1

8

)
+ · · ·+ (2m−1)

(
1

2m

)
=

m

2
> K

which shows that (sn) is unbounded.

Theorem 3.5. If a series
∞∑

n=1

an converges, then an → 0 as n →∞.

CAUTION. If an → 0, the series
∞∑

n=1

an NEED NOT converge! See Example 3.4.

Theorem 3.6. Let an ≥ 0 for all n ∈ N. Then
∞∑

n=1

an converges if it has bounded

partial sums sn.

Example 3.7. The series
∞∑

n=1

1

n2
is convergent because sn < 2 for all n.

Theorem 3.8. (General Principle of convergence) A series
∞∑

n=1

an converges if, and

only if, for any ε > 0, there exists N ∈ N such that

m > n > N =⇒ |an+1 + an+2 + · · ·+ am| < ε.
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The following are three very useful tests for convergence of series.

Theorem 3.9. (Comparison Test) Let 0 ≤ an ≤ bn for all n (or, from some n

onwards ). If the series
∞∑

n=1

bn converges, then
∞∑

n=1

an converges. Equivalently, if

∞∑
n=1

an diverges, then
∞∑

n=1

bn diverges.

Theorem 3.10. (Root Test) If an > 0 and n
√

an ≤ r < 1 for some fixed r, and for

all n (or, from some n onwards), then
∞∑

n=1

an converges. If n
√

an ≥ 1 from some n

onwards, then
∞∑

n=1

an diverges.

Theorem 3.11. (Ration Test) If an > 0 and

an+1

an

≤ r < 1

for some fixed r, and for all n ( or, from some n onwards ), then
∞∑

n=1

an converges. If

an+1

an

≥ 1

from some n onwards, then
∞∑

n=1

an diverges.

Example 3.12. What can you say about the convergence or divergence of the
following series;

∞∑
n=1

xn

n!
;

∞∑
n=1

1

log n
;

∞∑
n=1

(
n

2n + 1

)n

;
∞∑

n=1

sin
1

n
.

A series of the form
∞∑

n=1

(−1)n+1an with an ≥ 0 is called an alternating series.

Theorem 3.13. (Leibniz) An alternating series
∞∑

n=1

(−1)n+1an is convergent if the

sequence (an) decreases to 0, that is, (an) is decreasing and lim
n→∞

an = 0.

Example 3.14. The series
∞∑

n=1

(−1)n+1 1

n
converges.
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Definition 3.15. A series
∞∑

n=1

an is said to be absolutely convergent or, converge

absolutely, if the series
∞∑

n=1

|an| converges. If
∞∑

n=1

an converges, but
∞∑

n=1

|an| diverges,

then we say that
∞∑

n=1

an converges conditionally.

Proposition 3.16. If
∞∑

n=1

|an| converges, then
∞∑

n=1

an converges; in other words,

every absolutely convergent series is convergent.

Cauchy Product

Theorem 3.17. Let
∞∑

n=0

an and
∞∑

n=0

bn be absolutely convergent series. Define

cn =
∑

p+q=n

apbq = a0bn + a1bn−1 + · · ·+ anb0.

Then the series
∞∑

n=0

cn converges absolutely and

∞∑
n=0

cn =

(
∞∑

n=0

an

)(
∞∑

n=0

bn

)
.

Proof. Write A =
∞∑

n=0

an and B =
∑∞

n=0 bn. Let

sn = a0 + a1 + · · ·+ an ,

tn = b0 + b1 + · · ·+ bn .

Then we have
wn := sntn −→ AB as n →∞.

Since

0 ≤ |c0|+ · · ·+ |cn| ≤ (|a0|+ · · ·+ |an|)(|b0|+ · · ·+ |bn|) ≤

(
∞∑

n=0

|an|

)(
∞∑

n=0

|bn|

)
,

the series
∞∑

n=0

|cn| converges because it has bounded partial sums.
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Next, we show
∞∑

n=0

cn =

(
∞∑

n=0

an

)(
∞∑

n=0

bn

)
. First, assume that an , bn ≥ 0 for all

n. Then the inequalities
w[n

2
] ≤ c0 + · · ·+ cn ≤ wn

and the fact that both sequences wn and w[n
2
] converge to AB yield

∞∑
n=0

cn = lim
n→∞

(c0 + · · ·+ cn) = AB.

Finally, make no assumption on an and bn. For any x ∈ R, we can write

x = x+ − x−

with x+, x− ≥ 0. Indeed, we can let x+ = max(x, 0) and x− = −min(x, 0).
Now we have

cn =
∑

p+q=n

apbq =
∑

p+q=n

(a+
p − a−p )(b+

q − b−q )

=
∑

p+q=n

a+
p b+

q −
∑

p+q=n

a+
p b−q −

∑
p+q=n

a−p b+
q +

∑
p+q=n

a−p b−q

:= xn − yn − un + vn.

By the above arguments, we have

∞∑
n=0

xn =

(
∞∑

n=0

a+
n

)(
∞∑

n=0

b+
n

)
,

∞∑
n=0

yn =

(
∞∑

n=0

a+
n

)(
∞∑

n=0

b−n

)
,

∞∑
n=0

un =

(
∞∑

n=0

a−n

)(
∞∑

n=0

b+
n

)
,

∞∑
n=0

vn =

(
∞∑

n=0

a−n

)(
∞∑

n=0

b−n

)
.

Hence we have

∞∑
n=0

cn =
∞∑

n=0

xn −
∞∑

n=0

yn −
∞∑

n=0

un +
∞∑

n=0

vn

=

(
∞∑

n=0

a+
n −

∞∑
n=0

a−n

)(
∞∑

n=0

b+
n −

∞∑
n=0

b−n

)

= AB.
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4 Power series

A series of the form
∞∑

n=0

an(x− a)n

is called a power series (in x)centred at a with coefficients an. We often consider the
power series

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + · · ·

centred at 0.

Theorem 4.1. Given any power series
∞∑

n=0

anx
n, one of the following three conditions

holds:

(i)
∞∑

n=0

anx
n converges only at x = 0;

(ii)
∞∑

n=0

anx
n converges absolutely for all x ∈ R;

(iii) there exists R > 0 such that
∞∑

n=0

anx
n converges absolutely for |x| < R and

diverges for |x| > R.

Definition 4.2. When condition (iii) above occurs, the number R > 0 is called the

radius of convergence of the power series
∞∑

n=0

anx
n. For conditions (i) and (ii) above,

we define the radius of convergence R to be 0 and ∞, respectively. Thus, every power
series has a radius of convergence R.

Definition 4.3. The domain of convergence of a power series
∞∑

n=0

anx
n is the set

{
x ∈ R :

∞∑
n=0

anx
n converges

}
.

If a power series
∞∑

n=0

anx
n has radius of convergence R, then its domain of convergence

is an interval with endpoints −R and R, for example, (−R,R) or [−R,R), or some
other form. Note that the domain of convergence always contains the open interval
(−R,R).
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Given a power series
∞∑

n=0

anx
n,

we can compute its radius of convergence R by the following formulae:

R =
1

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
=

1

lim
n→∞

n
√
|an|

provided the above limits exist.

Example 4.4. The power series
∞∑

n=1

xn

n
has radius of convergence

R =
1

lim
n→∞

∣∣∣∣1/(n + 1)

1/n

∣∣∣∣ = lim
n→∞

n

n + 1
= 1.

The series converges for x ∈ (−1, 1). At x = 1, the series
∞∑

n=1

1

n
diverges. At x = −1,

the series
∞∑

n=1

(−1)n

n
converges. So the domain of convergence is [−1, 1).

Example 4.5. Find the radius of convergence of each of the following series:

∞∑
n=0

xn

n!
,

∞∑
n=0

(−1)x2n

(2n)!
,

∞∑
n=1

nnxn ,

∞∑
n=0

(3 + (−1)n)nxn .
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5 Limits of functions

Definition 5.1. Let a ∈ S ⊂ R. Let

f : S\{a} −→ R

be a function. We say that f(x) tends to ` as x tends to a (in S) if

∀ε > 0,∃δ > 0 such that x ∈ S and 0 < |x− a| < δ =⇒ |f(x)− `| < ε.

Usually, S is an open interval, we often omit the words “in S” if it is understood and
also say that f has a limit at a in the above situation.

Lemma 5.2. (Uniqueness of limit) If f(x) tends to ` and `′ as x tends to a, then
` = `′.

Definition 5.3. If f(x) tends to ` as x tends to a, then we call ` the limit of f(x)
as x tends to a and write

lim
x→a

f(x) = `.

We note that f need not be defined at a.

Example 5.4. The function f(x) = x sin
1

x
is defined on R\{0} and

lim
x→0

x sin
1

x
= 0.

Indeed, let ε > 0. Choose δ = ε. Then

0 < |x− 0| < δ =⇒ |x| < δ

=⇒
∣∣∣∣x sin

1

x
− 0

∣∣∣∣ =

∣∣∣∣x sin
1

x

∣∣∣∣ ≤ |x| < δ = ε.

The following two propositions are very useful for computing limits of functions.

Proposition 5.5. Given lim
x→a

f(x) = ` and lim
x→a

g(x) = ρ, we have

lim
x→a

(f + g)(x) = ` + ρ;

lim
x→a

(fg)(x) = `ρ;

lim
x→a

(
1

f

)
(x) =

1

`
if ` 6= 0.

Further, if f(x) ≥ g(x) for all x, then ` ≥ ρ.

Proposition 5.6. If h(x) ≤ f(x) ≤ g(x) and lim
x→a

h(x) = lim
x→a

g(x) = `, then

lim
x→a

f(x) = `.

Example 5.7. lim
x→1

1−
√

x

1− x
=

1

2
; lim

x→0

sin x

x
= 1.
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One-sided limits

Definition 5.8. Let a ∈ S ⊂ R and let f : S\{a} −→ R be a function. We say that
f(x) tends to the limit ` as x tends to a from the left ( or increases to a) (in S) if

∀ε > 0,∃δ > 0 such that x ∈ S and a− δ < x < a =⇒ |f(x)− `| < ε.

Usually, S is an interval with an end point a, we often omit the words “in S” if it is
understood and denote the limit by

lim
x→a−

f(x) = ` , or lim
x↑a

f(x) = `

which is called the left-hand limit of f at a.

We define the right-hand limit of a function likewise.

Definition 5.9. Let a ∈ S ⊂ R and let f : S\{a} −→ R be a function. We say that
f(x) tends to the limit ` as x tends to a from the right ( or decreases to a) (in S) if

∀ε > 0,∃δ > 0 such that x ∈ S and a < x < a + δ =⇒ |f(x)− `| < ε.

Usually, S is an interval with an end point a, we often omit the words “in S” if it is
understood and denote the limit by

lim
x→a+

f(x) = ` , or lim
x↓a

f(x) = `

which is called the right-hand limit of f at a.

Example 5.10. lim
x→1−

[x] = 0 , lim
x→1+

[x] = 1 ;

lim
x→0−

exp

(
1

x

)
= 0 , lim

x→0+
exp

(
1

x

)
does not exist.

Theorem 5.11. A function has a limit at a if, and only if, it has equal one-sided
limits at a, in other words, the following two conditions are equal:

(i) lim
x→a

f(x) = ` ;

(ii) lim
x→a−

f(x) = lim
x→a+

f(x) = ` .

Application of limits : Derivatives

Let f : (a, b) −→ R be a function and let c ∈ (a, b). We say that f is differentiable
at c if the following limit exists

lim
x→c

f(x)− f(c)

x− c

in which case, the limit is called the derivative of f at c, and is denoted by f ′(c).
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Example 5.12. Let f(x) = xn. Then f ′(c) = ncn−1 for all c ∈ R.

More generally, we have:

Theorem 5.13. Let f(x) =
∞∑

n=0

anx
n be a power series with radius of convergence

R. Then f is differentiable at every point x ∈ (−R,R) with derivative

f ′(x) =
∞∑

n=1

nanx
n−1.

Example 5.14. exp ′(x) =

(
1 + x +

x2

2!
+ · · ·

)′
= 1 + x +

x2

2!
+ · · · = exp (x) ;

sin ′(x) =

(
x− x3

3!
+ · · ·

)′
= 1− x2

2!
+ · · · = cos (x) .

Proposition 5.15. The exponential function exp : R −→ (0,∞) is a bijection.

Proof. See Appendix.

Definition 5.16. The inverse exp−1 : (0,∞) −→ R of the exponential function exp
is called the natural logarithmic function and is denoted by

log : (0,∞) −→ R .

Therefore we have
log exp(x) = exp log(x) = x

for x in appropriate domains.
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6 Continuous functions

Let (a, b) be an open interval in R. We include the case of (a, b) = (−∞,∞) = R.

Definition 6.1. Let f : (a, b) −→ R. We say that f is continuous at a point c ∈ (a, b)
if

lim
x→c

f(x) = f(c),

in other words,

∀ε > 0 , ∃δ > 0 such that |x− c| < δ =⇒ |f(x)− f(c)| < ε.

Example 6.2. Let f : (a, b) −→ R be a differentiable function. Then f is continuous.
CAUTION. The converse is false!
The exponential function exp is differentiable, hence it is continuous.

Proposition 6.3. Let f , g : (a, b) −→ R be continuous functions. Then f + g, f − g
and fg are continuous functions on (a, b). Further, if g(x) 6= 0 for every x ∈ (a, b),

then the quotient
f

g
is continuous on (a, b).

Proof. This follows from the arithmetics of limits in Proposition 5.5.

Proposition 6.4. Let f , g : R −→ R be continuous functions. Then their composite
f ◦ g : R −→ R is also a continuous function.

Example 6.5. The Gaussian function exp(−x2) is continuous.

Proposition 6.6. Let f : R −→ R be continuous at a point c and f(c) > 0. Then
there exists δ > 0 such that

f(x) > 0

for all x ∈ (c− δ, c + δ).

Remark. We have similar result to the above for f(c) < 0.

A useful criterion of continuity is that a function is continuous if, and only if, it
preserves convergence of sequences.

Theorem 6.7. Let f : R −→ R be a function and let c ∈ R. The following conditions
are equivalent:

(i) f is continuous at c ;

(ii) if lim
n→∞

xn = c, then lim
n→∞

f(xn) = f(c) .
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Example 6.8. We have lim
n→∞

n
√

n = 1 because 0 ≤ n
√

n− 1 <
2√
n

. The function log

is continuous at the point 1, therefore lim
n→∞

log( n
√

n) = log 1 = 0 , or

lim
n→∞

log n

n
= 0 .

Finally, continuous functions have the following important properties.

Theorem 6.9. (Intermediate Value Theorem) Let f : [a, b] −→ R be a continuous
function such that f(a)f(b) < 0. Then there is a point t ∈ (a, b) satisfying f(t) = 0.

Example 6.10. The following equation has no rational root, but has a negative root:

3x5 + x4 + x3 + x2 + x + 1 = 0.

Example 6.11. Let f : [0, 1] −→ [0, 1] be a continuous function. Then there is a
point t ∈ [0, 1] such that f(t) = t.

Definition 6.12. A function f : S −→ R is said to be bounded if there is a constant
M such that

|f(x)| ≤ M

for all x ∈ S.

Theorem 6.13. Let f : [a, b] −→ R be a continuous function. Then f is bounded.

Example 6.14. In the above theorem, it is important that f is defined on a closed
interval. The theorem is false for continuous functions defined on open intervals, for

instance, the function f(x) =
1

x
is continuous on the open interval on (0, 1), but is

unbounded!

The following theorem says that a continuous function on a closed interval achieves
its supremum and infimum.

Theorem 6.15. Let f : [a, b] −→ R be a continuous function. Then there exist
s, t ∈ [a, b] such that

f(s) = sup{f(x) : x ∈ [a, b]} ,

f(t) = inf{f(x) : x ∈ [a, b]} .
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Appendix

Theorem. The exponential function exp : R −→ (0,∞) is a continuous bijection.

Proof. We first show that

exp(x + y) = exp(x) exp(y) (x, y ∈ R).

This follows from the product formula in Theorem 3.17:

exp(x) exp(y) =

(
∞∑

n=0

xn

n!

)(
∞∑

n=0

yn

n!

)
=

∞∑
n=0

n∑
k=0

xkyn−k

k!(n− k)!

=

(
∞∑

n=0

1

n!

)(
n∑

k=0

(
n
k

)
xkyn−k

)
=

∞∑
n=0

(x + y)n

n!

= exp(x + y).

In particular, we have
exp(x) exp(−x) = exp(0) = 1 (1)

and exp(x) 6= 0 for all x ∈ R. Since exp(x) > 0 for x > 0, we have exp(x) > 0 for all
x ∈ R.

By the definition of exp, we have exp(x) > exp(y) > exp(0) for x > y > 0.
It follows from (1) that exp(−y) > exp(−x). Hence exp is strictly increasing and
injective.

To show that exp is surjective, we apply the Intermediate Value Theorem since
exp is continuous. Let r ∈ (0,∞). If r = 1, then r = exp(0). If r > 1, then
exp(r) > r > exp(0) implies that r = exp(x) for some x ∈ (0, r) by Intermediate

Value Theorem. If r < 1, then
1

r
> 1 implies that

1

r
= exp(y) for some y ∈ R and

therefore r =
1

exp(y)
= exp(−y). This proves surjectivity of exp.
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