MAS/202 Algorithmic Mathematics: Coursework 9 Franco Vivaldi

DEADLINE: Wednesday of week 11, at 12:00 pm.

CONTENT: vectors

Problem 1. Let $F = \mathbb{Q}, \mathbb{R}, \mathbb{C}, \text{ or } \mathbb{Z}/(p), p$ a prime (or indeed let F be any field), and let $v_1, \ldots, v_k \in F^n$.

(a) Let $0 \neq \alpha \in F$. Prove that

 $\langle v_1, \ldots, v_{k-1}, \alpha v_k \rangle = \langle v_1, \ldots, v_k \rangle.$

[*Hint:* show that the left-hand side is contained in the righ-hand side, and vice-versa.]

(b) Prove that if the sequence (v_1, \ldots, v_k) is in echelon form, then v_1, \ldots, v_k are linearly independent.

[*Hint:* this is linear algebra.]

(c) Let $F = \mathbb{Z}/(p)$, p a prime. Using Echelonize, prove that if \mathcal{W} is the subspace of F^n generated by the vectors $W = (w_1, \ldots, w_m)$, then $\#\mathcal{W} = p^s$, for some s, with $0 \le s \le n$. Explain what is s. [*Hint:* use the result of the previous problem.]

Problem 2. Let $F = \mathbb{Z}/(2)$, and let $v_1 = (0, 1, 0, 1)$, $v_2 = (0, 0, 0, 0)$ $v_3 = (1, 1, 0, 1)$, $v_4 = (1, 0, 1, 0)$, $v_5 = (0, 1, 1, 1)$ be in F^4 . Use the algorithm Echelonize to determine a sequence U, in echelon form, of vectors in F^4 ,

such that $\langle U \rangle = \langle v_1, \ldots, v_5 \rangle$.

Problem 3. Let $F = \mathbb{Z}/(5)$, and let

 $v_1 = (4, 3, 1, 3)$ $v_2 = (1, 3, 4, 1)$ $v_3 = (2, 3, 3, 2) \in F^4.$

(a) Use the algorithm Echelonize to determine a sequence U, in echelon form, of vectors in F^4 , such that $\langle U \rangle = \langle v_1, v_2, v_3 \rangle$.

(b) Let $\mathcal{V} = \langle v_1, v_2, v_3 \rangle$. Which of the following vectors belong to \mathcal{V} ?

$$(2, 1, 3, 1)$$
 $(3, 1, 4, 2)$ $(2, 2, 4, 3).$

In each case, explain why.

Problem 4. Write an algorithm to the following specifications

Algorithm Echelon

INPUT: W, a finite sequence of *n*-dimensional vectors, over the same field. OUTPUT: TRUE, if W is in echelon form, FALSE otherwise.

Explain what you are doing. Use the notation $W = (W_1, W_2, \ldots)$, and $W_k = (W_{k,1}, W_{k,2}, \ldots)$, and the operator # to access input data. Assume that the algorithm ldindx and ldterm are available. Decide how ldterm behaves for the zero vector, and design the algorithm accordingly.