cwork9b.tex $3 / 12 / 2003$

MAS/202 Algorithmic Mathematics: Coursework 9

Franco Vivaldi

DEADLINE: Wednesday of week 11, at 12:00 pm.
CONTENT: vectors

MicroESSAY: Write an essay on vectors (in the context of this course). [$\notin, 100$]

Problem 1. Let $F=\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or $\mathbb{Z} /(p), p$ a prime (or indeed let F be any field), and let $v_{1}, \ldots, v_{k} \in F^{n}$.
(a) Let $0 \neq \alpha \in F$. Prove that

$$
\left\langle v_{1}, \ldots, v_{k-1}, \alpha v_{k}\right\rangle=\left\langle v_{1}, \ldots, v_{k}\right\rangle .
$$

[Hint: show that the left-hand side is contained in the rigth-hand side, and vice-versa.]
(b) Prove that if the sequence $\left(v_{1}, \ldots, v_{k}\right)$ is in echelon form, then v_{1}, \ldots, v_{k} are linearly independent.
[Hint: this is linear algebra.]
(c) Let $F=\mathbb{Z} /(p), p$ a prime. Using Echelonize, prove that if \mathcal{W} is the subspace of F^{n} generated by the vectors $W=\left(w_{1}, \ldots, w_{m}\right)$, then $\# \mathcal{W}=p^{s}$, for some s, with $0 \leq s \leq n$. Explain what is s. [Hint: use the result of the previous problem.]

Problem 2. Let $F=\mathbb{Z} /(2)$, and let $v_{1}=(0,1,0,1)$, $v_{2}=(0,0,0,0)$ $v_{3}=(1,1,0,1), v_{4}=(1,0,1,0), v_{5}=(0,1,1,1)$ be in F^{4}. Use the algorithm Echelonize to determine a sequence U, in echelon form, of vectors in F^{4}, such that $\langle U\rangle=\left\langle v_{1}, \ldots, v_{5}\right\rangle$.

Problem 3. Let $F=\mathbb{Z} /(5)$, and let

$$
v_{1}=(4,3,1,3) \quad v_{2}=(1,3,4,1) \quad v_{3}=(2,3,3,2) \in F^{4} .
$$

(a) Use the algorithm Echelonize to determine a sequence U, in echelon form, of vectors in F^{4}, such that $\langle U\rangle=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$.
(b) Let $\mathcal{V}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Which of the following vectors belong to \mathcal{V} ?

$$
(2,1,3,1) \quad(3,1,4,2) \quad(2,2,4,3) .
$$

In each case, explain why.

Problem 4. Write an algorithm to the following specifications

