MAS/202 Algorithmic Mathematics: Coursework 8

Franco Vivaldi

DEADLINE: Wednesday of week 10, at 12:00 pm. CONTENT: vectors

Problem 1. Let $w_{1}=(1,1,0)$, $w_{2}=(2,1,2)$ be vectors in $(\mathbb{Z} /(3))^{3}$, and let $\mathcal{W}=\left\langle w_{1}, w_{2}\right\rangle$.

Write down all the elements of \mathcal{W}; for each of them determine the leading index and -if appropriate - the leading term.

Problem 2. Write an algorithm to the following specifications Algorithm ldindx
INPUT: $v=\left(v_{1}, \ldots, v_{n}\right)$, an n-dimensional vector.
OUTPUT: l, where l is the leading index of v.

Problem 3. Let $v, w_{1}, w_{2}, w_{3} \in \mathbb{Q}^{3}$, with

$$
v=(4 / 7,-3 / 5,5 / 7) ; \quad w_{1}=(1,1 / 2,1), \quad w_{2}=(0,1,2), \quad w_{3}=(0,0,1) .
$$

(a) $\operatorname{Trace} \operatorname{Sift}\left(v,\left(w_{1}, w_{2}, w_{3}\right)\right)$.
(b) Write v as a linear combination of w_{1}, w_{2}, w_{3}, verifying your calculation explicitly.

Problem 4. Let $F=\mathbb{Z} /(11)$, and let

$$
w_{1}=(1,0,7,3) \quad w_{2}=(0,1,3,4) \quad w_{3}=(0,0,0,1) \in F^{4} .
$$

Use the algorithm Sift to prove that $(5,2,4,3) \notin\left\langle w_{1}, w_{2}, w_{3}\right\rangle$.

Problem 5. Consider the following algorithm
Algorithm Triangle
INPUT: $a, b, c \in \mathbb{Q}^{2}$.
OUTPUT: TRUE, if a, b, c are vertices of an equilateral triangle, FALSE otherwise.
(a) Write the algorithm, assuming $a=\left(a_{1}, a_{2}\right)$, etc. The algorithm must perform only rational operations, i.e., no square roots.
[Hint: the vertices are not necessarily distinct.]
(b) Describe the algorithm. [$\notin, 50]$
(c) Will the algorithm return the value True for some input?
[Hint: translate one vertex to the origin, then use trigonometry.]

