cwork8b.tex 27/11/2003

MAS/202 Algorithmic Mathematics: Coursework 8 Franco Vivaldi

DEADLINE: Wednesday of week 10, at 12:00 pm. CONTENT: vectors

Problem 1. Let $w_1 = (1, 1, 0), w_2 = (2, 1, 2)$ be vectors in $(\mathbb{Z}/(3))^3$, and let $\mathcal{W} = \langle w_1, w_2 \rangle$.

Write down all the elements of \mathcal{W} ; for each of them determine the leading index and —if appropriate— the leading term.

Problem 2. Write an algorithm to the following specifications

Algorithm ldindx INPUT: $v = (v_1, \ldots, v_n)$, an *n*-dimensional vector. OUTPUT: l, where l is the leading index of v.

Problem 3. Let $v, w_1, w_2, w_3 \in \mathbb{Q}^3$, with

v = (4/7, -3/5, 5/7); $w_1 = (1, 1/2, 1),$ $w_2 = (0, 1, 2),$ $w_3 = (0, 0, 1).$

(a) Trace $Sift(v, (w_1, w_2, w_3))$.

(b) Write v as a linear combination of w_1, w_2, w_3 , verifying your calculation explicitly.

Problem 4. Let $F = \mathbb{Z}/(11)$, and let

 $w_1 = (1, 0, 7, 3)$ $w_2 = (0, 1, 3, 4)$ $w_3 = (0, 0, 0, 1) \in F^4.$

Use the algorithm Sift to prove that $(5, 2, 4, 3) \notin \langle w_1, w_2, w_3 \rangle$.

Problem 5. Consider the following algorithm

Algorithm Triangle

 $\texttt{INPUT:} \ a,b,c \in \mathbb{Q}^2.$

(a) Write the algorithm, assuming $a = (a_1, a_2)$, etc. The algorithm must perform only rational operations, i.e., no square roots. [*Hint:* the vertices are not necessarily distinct.]

(b) Describe the algorithm. $[\not e, 50]$

(c) Will the algorithm return the value TRUE for some input? [*Hint:* translate one vertex to the origin, then use trigonometry.]