cwork7b.tex $25 / 11 / 2003$
MAS/202 Algorithmic Mathematics: Coursework 7
Franco Vivaldi

DEADLINE: Wednesday of week 9, at 12:00 pm.
CONTENT: Inverses, gcd

Problem 1. Write down all the invertible elements of $\mathbb{Z} /(24)$.
[Hint: use theorem 21 of the web-book.]

Problem 2. Write an algorithm to the following specifications
Algorithm IsInvertible
INPUT: $i, m \in \mathbb{Z}, m>1$.
OUTPUT: TRUE if $[i]_{m}$ is invertible in $\mathbb{Z} /(m)$, FALSE otherwise.
[Hint: use GCD, and the hint of previous problem.]

Problem 3. The Euler's ϕ-function is defined on the positive integers, as follows: $\quad \phi(1)=1$; for $m>1, \phi(m)$ is the number of invertible elements in $\mathbb{Z} /(m)$. Write the algorithm to the following specifications:
Algorithm Phi
INPUT: m, a positive integer.
OUTPUT: $\phi(m)$.
[Hint: use IsInvertible, and section 2.5.1 of the web-book.]

Problem 4. Write an algorithm to the following specifications.
Algorithm AllGCDs
INPUT: a, b, p, where p is a prime, and $a, b \in \mathbb{Z} /(p)[x]$.
OUTPUT: S, where $S=\left\{f_{1}, f_{2}, \ldots\right\}$ is the set of all gcds of a and b in $\mathbb{Z} /(p)[x]$.
[Hint: how do you get all gcds, if you have one of them? See end of section 5.3 of web-book, and exercise 5.11. To create the set of gcds, look at IntegerFactorization, for inspiration.]

Problem 5. Apply the algorithm Inverse to determine whether $[37]_{84}$ is invertible, and if so, to find its inverse.

Problem 6. Let $F=\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or $\mathbb{Z} /(p)$, where p is a prime (or indeed, F can be any field). Let f and g be non-zero polynomials in $F[x]$. Prove that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.
[Hint: if you do not use the fact that F is a field, you proof is wrong.]

Problem 7. Suppose that g is a gcd of polynomials a and b in $F[x]$ (F as above). Prove that if f is a degree zero polynomial in $F[x]$, then $f g$ is also a gcd of a and b.

