cwork7b.tex 25/11/2003

MAS/202 Algorithmic Mathematics: Coursework 7 Franco Vivaldi

DEADLINE: Wednesday of week 9, at 12:00 pm.

CONTENT: Inverses, gcd

Problem 1. Write down all the invertible elements of $\mathbb{Z}/(24)$. [*Hint:* use theorem 21 of the web-book.]

Problem 2. Write an algorithm to the following specifications

Algorithm IsInvertible INPUT: $i, m \in \mathbb{Z}, m > 1$. OUTPUT: TRUE if $[i]_m$ is invertible in $\mathbb{Z}/(m)$, FALSE otherwise. [*Hint:* use GCD, and the hint of previous problem.]

Problem 3. The Euler's ϕ -function is defined on the positive integers, as follows: $\phi(1) = 1$; for m > 1, $\phi(m)$ is the number of invertible elements in $\mathbb{Z}/(m)$. Write the algorithm to the following specifications:

Algorithm Phi INPUT: m, a positive integer. OUTPUT: $\phi(m)$.

[*Hint*: use IsInvertible, and section 2.5.1 of the web-book.]

Problem 4. Write an algorithm to the following specifications.

Algorithm AllGCDs INPUT: a, b, p, where p is a prime, and $a, b \in \mathbb{Z}/(p)[x]$. OUTPUT: S, where $S = \{f_1, f_2, \ldots\}$ is the set of all gcds of a and b in $\mathbb{Z}/(p)[x]$.

[*Hint:* how do you get all gcds, if you have one of them? See end of section 5.3 of web-book, and exercise 5.11. To create the set of gcds, look at IntegerFactorization, for inspiration.]

Problem 5. Apply the algorithm **Inverse** to determine whether $[37]_{84}$ is invertible, and if so, to find its inverse.

Problem 6. Let $F = \mathbb{Q}$, \mathbb{R} , \mathbb{C} , or $\mathbb{Z}/(p)$, where p is a prime (or indeed, F can be any field). Let f and g be non-zero polynomials in F[x]. Prove that $\deg(fg) = \deg(f) + \deg(g)$.

[*Hint*: if you do not use the fact that F is a field, you proof is wrong.]

Problem 7. Suppose that g is a gcd of polynomials a and b in F[x] (F as above). Prove that if f is a degree zero polynomial in F[x], then fg is also a gcd of a and b.