MAS/202 Algorithmic Mathematics: Coursework 6

 Franco VivaldiDEADLINE: Wednesday of week 8, at 12:00 pm.
CONTENT: Recursive algorithms

MîcroESSAY: Write an essay on recursive algorithms. [$\notin, 50]$

Problem 1. Apply the algorithm GCD, to determine a greatest common divisor of 11147 and 3763.

Problem 2. Let $F=\mathbb{Z} /(5)$, and let $c=x^{4}+2 x^{3}+3 x^{2}+2 x+2$ and $d=2 x^{2}+3$ be polynomials in $F[x]$.
(a) Apply the algorithm ExtendedGCD to determine $g, s, t \in F[x]$, such that g is a gcd of c and d, and $g=s c+t d$.
(b) Verify the validity of the equation $g=s c+t d$ in this case.

Problem 3. Consider the following algorithm

```
Algorithm M
INPUT: }x,y\in\mathbb{N
OUTPUT: ??
if x=0 then
    return 0;
else
    if }x\leqy\mathrm{ then
        return y+M(x-1,y);
    else
        return M(y,x);
    fi;
fi;
end;
```

(a) Trace $\mathrm{M}(7,3)$. (There should be 5 calls to the algorithm.)
(b) Explain in one sentence what this algorithm does. [$\notin]$
(c) Explain what happens if the boolean expression $x \leq y$ is replaced by $x<y$.
(d) Write a non-recursive version of the above algorithm.
(The algorithm should perform an analogous computation using a loop, and produce the same output. In particular, no multiplications are allowed.)

Problem 4*. Find two integers a, b, with $0 \leq b<a$ such that the recursive computation of $\operatorname{GCD}(a, b)$ involves 10 calls to the function GCD. Explain what you are doing. (The smaller the value of a, the higher the mark.)
[Hint: start from the last call to GCD, and work your way backward, minimizing the size of the first argument of the previous call.]

