cwork5b.tex $4 / 11 / 2003$

MAS/202 Algorithmic Mathematics: Coursework 5

Franco Vivaldi

DEADLINE: Wednesday of week 7, at 12:00 pm.
CONTENT: Polynomials

MîcroESSAY: Write an essay on polynomials [$\notin, 100$]

Problem 1. We represent a polynomial over a commutative ring R as a finite sequence C of elements of R, which specifies the coefficients of the polynomial, starting from the constant term. The elements of C are C_{1}, C_{2}, \ldots, and its cardinality is \#C.

Write an algorithm to the following specifications
Algorithm Degree
INPUT: C, a finite sequence of elements of R.
OUTPUT: d, where d the degree of the polynomial represented by C.
[Hint: pay attention to the mismatch between subscripts, and to the fact that C may have zero entries.]

Problem 2. In the statements below, let m and n assume integer values, and let W denote the while-loop.

```
x:=m;
y:= n;
z:= 1;
while }y\not=0\mathrm{ do
    z:=z\cdotx;
    y:= y-1;
od;
```

(a) For which integer values of n will W terminate? Explain your answer.
(b) Prove that the boolean expression $x^{y} z=m^{n}$ is a loop invariant for W . [Hint: read the web-book.]
(c) Suppose that W terminates. Show that, on termination, $z=m^{n}$.

Problem 3. Let $R=\mathbb{Z} /(9)$, and let $a=3 x^{3}+3 x+2, b=6 x^{3}+1$ be polynomials in $R[x]$. Determine

$$
\operatorname{deg}\left(a^{2}\right), \quad a b, \quad 3 a, \quad a+b, \quad b^{3} .
$$

Problem 4. Let $R=\mathbb{Z} /(7)$, and let $a=5 x^{3}+4 x+1, b=2 x^{2}+x+6$ be polynomials in $R[x]$. Use the algorithm PolynomialQuoRem to determine $a \operatorname{DIV} b, \quad a \operatorname{MOD} b, \quad b \operatorname{DIV} a, \quad b \operatorname{MOD} a$.

