MAS/202 Algorithmic Mathematics: Coursework 4

 Franco VivaldiDEADLINE: Wednesday of week 6, at 12:00 pm. CONTENT: Modular arithmetic

MîcroESSAY: Write an essay on modular arithmetic. [$\notin, 100$]

Problem 1.

(a) Write five elements of \equiv_{7}. [Hint: \equiv_{7} is a relation.]
(b) Find all solutions to the equation $x^{3}=x$ in $\mathbb{Z} /(8)$.
(c) Show that the function

$$
f: \mathbb{Z} /(9) \rightarrow \mathbb{Z} /(9) \quad f(x)=x[7]_{9}
$$

is injective.
(d) Show that the function

$$
f: \mathbb{Z} /(14) \rightarrow \mathbb{Z} /(14) \quad f(x)=x[12]_{14}
$$

is not injective.
(e) Compute the value of the expression

$$
[1110]_{11}[2588]_{11}+[-1000]_{11}
$$

giving your answer in the form $[k]_{11}$, with $0 \leq k<11$.

Problem 2. Let $x \in \mathbb{Z} /(m)$. We say that x is a square if there exists $y \in \mathbb{Z} /(m)$ such that $x=y^{2}$.
(a) Find all squares in $\mathbb{Z} /(13)$.
(b) Write an algorithm to the following specifications

Algorithm MSquare
INPUT: $a, m \in \mathbb{Z}, m>1$.
OUTPUT: TRUE is $[a]_{m}$ is a square in $\mathbb{Z} /(m)$, and FALSE otherwise.
(c) Describe the structure of the algorithm MSquare in fewer that 50 words, minimizing the use of symbols.

Problem 3. Let m be an integer, and $a, b \in \mathbb{Z} /(m)$.
(a) Determine all invertible elements in each of $\mathbb{Z} /(6), \mathbb{Z} /(7), \mathbb{Z} /(8)$.
(b) Define concisely [\notin, hence compute

$$
\sum_{k=1}^{6} \frac{[1]_{7}}{[k]_{7}}
$$

(c) Prove that if a and b are invertible, then so is a^{-1} and $a b$.
(d) Suppose that b is invertible. Prove that $a b=[0]_{m}$ if and only if $a=[0]_{m}$.

