MAS/202 Algorithmic Mathematics: Coursework 4 Franco Vivaldi

DEADLINE: Wednesday of week 6, at 12:00 pm.

CONTENT: Modular arithmetic

 $\label{eq:MtcroESSAY} \text{MtcroESSAY}: \quad \text{Write an essay on modular arithmetic. } [\not e, 100]$

Problem 1.

- (a) Write five elements of \equiv_7 . [*Hint*: \equiv_7 is a relation.]
- (b) Find all solutions to the equation $x^3 = x$ in $\mathbb{Z}/(8)$.
- (c) Show that the function

 $f: \mathbb{Z}/(9) \to \mathbb{Z}/(9) \qquad \qquad f(x) = x \, [7]_9$

is injective.

(d) Show that the function

$$f: \mathbb{Z}/(14) \to \mathbb{Z}/(14)$$
 $f(x) = x [12]_{14}$

is not injective.

(e) Compute the value of the expression

 $[1110]_{11}[2588]_{11} + [-1000]_{11}$

giving your answer in the form $[k]_{11}$, with $0 \le k < 11$.

Problem 2. Let $x \in \mathbb{Z}/(m)$. We say that x is a square if there exists $y \in \mathbb{Z}/(m)$ such that $x = y^2$.

- (a) Find all squares in $\mathbb{Z}/(13)$.
- (b) Write an algorithm to the following specifications

Algorithm MSquare

INPUT: $a, m \in \mathbb{Z}, m > 1$. OUTPUT: TRUE is $[a]_m$ is a square in $\mathbb{Z}/(m)$, and FALSE otherwise.

(c) Describe the structure of the algorithm MSquare in fewer that 50 words, minimizing the use of symbols.

Problem 3. Let *m* be an integer, and $a, b \in \mathbb{Z}/(m)$.

- (a) Determine all invertible elements in each of $\mathbb{Z}/(6)$, $\mathbb{Z}/(7)$, $\mathbb{Z}/(8)$.
- (b) Define concisely $[\not\in]$, hence compute

$$\sum_{k=1}^{6} \frac{[1]_7}{[k]_7}.$$

- (c) Prove that if a and b are invertible, then so is a^{-1} and ab.
- (d) Suppose that b is invertible. Prove that $ab = [0]_m$ if and only if $a = [0]_m$.