MAS/202 Algorithmic Mathematics: Coursework 2

Franco Vivaldi

DEADLINE: Wednesday of week 4, at 12:00 pm.
CONTENT: Primes.
$[\notin, n]$: no mathematical symbols are allowed; use approximately n words.

MícroESSAY: Write an essay on prime numbers. [$\notin, 100]$

Problem 1.

(a) Let a, b, c, x, y be integers, such that a divides b and a divides c. Show that a divides $x b+y c$.
(b) Show that, if n is odd, then $\left(n^{2} \operatorname{MOD} 8\right)=1$.
[Hint: remember that $a \operatorname{MOD} b=r$ means $a=q b+r$, for some q. How do you represent an odd integer?]
(c) Using the above, show that $x^{2}+y^{2}=z^{2}$ cannot be true in integers, when both x and y are odd. Give an example.
[Hint: treat the case z even and odd separately.]

Problem 2. Let A, X be sets, with $A \subset X$, and let \mathcal{C}_{A} be the characteristic function of A in X. Consider the following algorithm

Algorithm CA
INPUT $x \in X$
OUTPUT $\mathcal{C}_{A}(x)$
return ??;
end;
White the return statement corresponding to the case $X=\mathbb{Z}$ and A the set of
(i) the divisors of $2^{100}-1$.
(ii) the even multiples of 7 .
(iii) the integers divisible by 3 or 7 , but not by both.
(iv) the positive primes with at least 10 decimal digits.
(v) the positive odd primes p such that $2 p+1$ is also prime.
(vi) the primes which differ from their nearest multiple of 100 by a prime.

Use MOD for divisibility and IsPrime for primality testing. Try to make boolean expressions efficient. Assume they are evaluated from left to right (unless there are parentheses), and that redundant evaluations are not performed (e.g., if x is FALSE, the value of x AND y is known without evaluating $y)$.

Problem 3. Use IsPrime to decide the primality of 437.

Problem 4. Use IntegerFactorization to determine the prime factorization of 3626 .
[This is a 2001 final examination question. Check your result by multiplying out the factors.]

Problem 5. Consider the following algorithm
Algorithm IntSqrt
INPUT: $x \in \mathbb{Z}, x \geq 0$.
OUTPUT: the largest integer not exceeding \sqrt{x}.
(a) Write it, performing only integer arithmetic. (You need a loop.)
(b) Explain how it works. [$\notin, 50]$

