EXPANSIONS IN NON-INTEGER BASES

NIKITA SIDOROV

1. Introduction into β-EXPansions

Representations of real numbers in non-integer bases were introduced by Rényi [17] and first studied by Rényi and by Parry [16].

Let first β be an integer greater than 1 . Then any number $x \in[0,1)$ can be represented in the form

$$
x=\sum_{n=1}^{\infty} a_{n} \beta^{-n}, \quad a_{n} \in\{0,1, \ldots, \beta\} .
$$

This representation is unique, except for a countable set of x. The corresponding map here is $\tau_{\beta}:[0,1) \rightarrow[0,1)$ defined by the formula

$$
\tau_{\beta}(x)=\beta x \bmod 1
$$

This map acts as the shift on the expansions, i.e., $a_{n}\left(\tau_{\beta} x\right)=a_{n+1}(x)$. The properties of this map are well known; in particular, it preserves the Lebesgue measure on the interval, and the corresponding dynamical system has various nice properties. See Figure 1 for the case $\beta=2$.

Assume now $\beta>1$ to be non-integer. We call any representation of the form

$$
x=\sum_{n=1}^{\infty} a_{n} \beta^{-n}, \quad a_{n} \in\{0,1, \ldots,\lfloor\beta\rfloor-1\} .
$$

a β-expansion of x. (Here $\lfloor t\rfloor$ denotes the integer part of t.) For instance, for $\beta \in(1,2)-$ which is going to be our main example - the set of "digits" is $\{0,1\}$, i.e., like the one for the binary expansions. It is easy to show "by hand" that any $x \in\left[0, \frac{\lfloor\beta\rfloor}{\beta-1}\right]$ has at least one β-expansion.

We will do it in a way similar to the standard doubling map. Let us assume for simplicity that $1<\beta<2$ and introduce the following multivalued map:

$$
T_{\beta}(x)= \begin{cases}\beta x, & x \in\left[0, \frac{1}{\beta}\right] \\ \beta x \text { or } \beta x-1, & x \in\left(\frac{1}{\beta}, \frac{1}{\beta(\beta-1)}\right) \\ \beta x-1, & x \in\left[\frac{1}{\beta(\beta-1)}, \frac{1}{\beta-1}\right]\end{cases}
$$

(see Figure 2).
Date: July 28, 2010.

Figure 1. The doubling map

We see that if $x \in\left[0, \frac{1}{\beta}\right)$ or $x \in\left(\frac{1}{\beta(\beta-1)}, \frac{1}{\beta-1}\right]$, then $T_{\beta}(x)$ is uniquely defined. However, whenever x lies in the switch region $\left[\frac{1}{\beta}, \frac{1}{\beta(\beta-1)}\right]$, we have a choice between 0 and 1 .

Figure 3 depicts a branching pattern that occurs for the multivalued map T_{β}. We will see that typically it is indeed a binary tree.

If we always choose 1 (or, in the general case, the largest possible "digit"), such an expansion is called greedy. The map T_{β} becomes the β-transformation $\tau_{\beta} x=\beta x \bmod 1$ (restricted to $[0,1)$) - see Figure 4.

Although τ_{β} does not preserve the Lebesgue measure, there exists a bounded positive density function h_{β} such that the absolutely continuous measure μ_{β} given by h_{β} is $\tau_{\beta^{-}}$ invariant (see [16]). The dynamical system ($\left[0,1\right.$) , $\mu_{\beta}, \tau_{\beta}$) is well studied, and its properties are similar to the ones of the doubling map.

Theorem 1. ([9]) If $\beta<\frac{1+\sqrt{5}}{2}$, then any $x \in(0,1 /(\beta-1))$ has a continuum of distinct β-expansions.

Proof. One can check (exercise!) that if $x<1 / \beta$, then it is impossible that $T_{\beta}(x)>$ $1 /(\beta(\beta-1))$ - see Figure 5. Hence eventually the trajectory of any point bifurcates, and the procedure repeats for each of the images, ad infinitum.

Figure 2. Multivalued β-transformation T_{β}

Figure 3. Branching and bifurcations
A quantitative version of this result has been recently proven by Feng and the author. Put

$$
\mathcal{N}_{n}(x ; \beta)=\#\left\{\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n} \mid \exists\left(a_{n+1}, a_{n+2}, \ldots\right): x=\sum_{k=1}^{\infty} a_{k} \beta^{-k}\right\}
$$

Figure 4. The β-transformation τ_{β}

Theorem 2. ([12]) Let β be an arbitrary number in $\left(1, \frac{1+\sqrt{5}}{2}\right)$. Then there exists $c=$ $c(\beta)>0$ such that

$$
\liminf _{n \rightarrow \infty} \frac{\log \mathcal{N}_{n}(x ; \beta)}{n} \geq c \quad \text { for any } x \in\left(0, \frac{1}{\beta-1}\right)
$$

What about when β is greater than the golden ratio? In this case one can show (exercise!) that there exists a point $x=x(\beta)<1 / \beta$ such that $T_{\beta}(x)>1 /(\beta(\beta-1))$, and $T_{\beta}^{2}(x)=x$ (a 2-cycle) - see Figure 6.

Hence the β-expansion of such a point is necessarily $010101 \ldots$. We will discuss unique β-expansions in detail in the next section.

Thus, it is not true that every internal point has a continuum of β-expansions if β is between the golden ratio and 2. However, a weaker result is still valid:

Theorem 3. (Sidorov [18, 19])
(1) Almost every point $x \in(0,1 /(\beta-1))$ has a continuum of β-expansions.
(2) Furthermore, the set of exceptions has Hausdorff dimension strictly less than 1.

Proof. We will prove the first part. Our first goal is to show that a.e. $x \in(0,1)$ has at least two different β-expansions. We may assume that $\beta \geq \frac{1+\sqrt{5}}{2}$.

Figure 5. The β-transformation T_{β} for $\beta=1.25$

Figure 6. The 2-cycle

Since β belongs to $[(1+\sqrt{5}) / 2,2)$, there exists $m=m(\beta) \geq 2$ such that

$$
\begin{equation*}
1+\beta^{-m+1}<\frac{1}{\beta-1} \tag{1.1}
\end{equation*}
$$

specifically, we can take

$$
m=\left\lfloor\log _{\beta} \frac{\beta-1}{2-\beta}\right\rfloor+1 \geq 2
$$

(for $\beta=(1+\sqrt{5}) / 2$ we have $\beta-1=\beta^{-1}, 2-\beta=\beta^{-2}$, whence $\log _{\beta} \frac{\beta-1}{2-\beta}=1$).
So, we consider x in $(0,1)$, and assume that its greedy expansion is of the form

$$
(\varepsilon_{1}, \ldots, \varepsilon_{n}, 1, \underbrace{0, \ldots, 0}_{m-1}, \varepsilon_{n+m+1}, \ldots) .
$$

We can construct a different β-expansion for x. Namely, if $x^{\prime}=\sum_{j=1}^{n} \varepsilon_{j} \beta^{-j}$, then

$$
x-x^{\prime}=\beta^{-n-1}+\sum_{j=n+m+1}^{\infty} \varepsilon_{j} \beta^{-j} \in\left[\beta^{-n-1}, \beta^{-n-1}+\beta^{-n-m}\right]
$$

because $\sum_{n+m+1}^{\infty} \varepsilon_{j} \beta^{-j} \leq \beta^{-n-m}$ (a property of the greedy expansions). On the other hand, we infer from (1.1) that

$$
\beta^{-n-1}+\beta^{-n-m}<\beta^{-n-2}+\beta^{-n-3}+\cdots=\frac{\beta^{-n-1}}{\beta-1}
$$

whence

$$
x-x^{\prime}<\beta^{-n-2}+\beta^{-n-3}+\cdots
$$

as well. This means that if we put $\varepsilon_{n+1}^{\prime}=0$, it is possible to find $\left(\varepsilon_{n+2}^{\prime}, \varepsilon_{n+3}^{\prime}, \ldots\right)$ in Σ such that $x=\sum_{j=1}^{\infty} \varepsilon_{j}^{\prime} \beta^{-j}$. By our construction, $\varepsilon_{n+1} \neq \varepsilon_{n+1}^{\prime}$.

Thus, the set \mathcal{U}_{β} - all x which have a unique β-expansion - has measure zero. Now, if for some x its tree of β-expansions (see Figure 3) is not the full binary tree, it means that one of the branches "flatlines". This implies that for one of β-expansions of x, say, for $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$, there exists k such that $\left(\varepsilon_{k}, \varepsilon_{k+1}, \ldots\right)$ is a unique expansion (since it does not bifurcates any further).

Since any shift of a β-expansion is either βx or $\beta x-1$, we infer that x belongs to a scaled copy of \mathcal{U}_{β}. Any such copy has zero measure and there is only a countable set of them for x to lie in. Hence the set of x whose branching is not full is a zero measure set. In particular, a.e. x has a continuum of β-expansions.

Finally, we would like to mention random β-expansions. Again, we assume for simplicity that $1<\beta<2$. Put $\Omega=\{0,1\}^{\mathbb{N}}$, and we regard 0 as "tails" and 1 as "heads". We introduce the random β-transformation $K_{\beta}:\left[0, \frac{1}{\beta-1}\right] \times \Omega \rightarrow\left[0, \frac{1}{\beta-1}\right] \times \Omega$ as follows:

$$
K_{\beta}(x, \omega)= \begin{cases}(\beta x, \omega), & x \in\left[0, \frac{1}{\beta}\right) \\ \left(\beta x-\omega_{1}, \sigma(\omega)\right), & x \in\left[\frac{1}{\beta}, \frac{1}{\beta(\beta-1)}\right] \\ (\beta x-1, \omega), & x \in\left(\frac{1}{\beta(\beta-1)}, \frac{1}{\beta-1}\right]\end{cases}
$$

Here $\sigma: \Omega \rightarrow \Omega$ is the one-sided shift, i.e., $\sigma\left(\omega_{1}, \omega_{2}, \omega_{3}, \ldots\right)=\left(\omega_{2}, \omega_{3}, \ldots\right)$. In other words, if we are outside the switch region, we just apply βx or $\beta x-1$ respectively and do not touch the "coin". If we are in the switch region, we flip a coin ($=$ check ω_{1}) and apply the corresponding map, after which we shift ω for the next flip, whenever we'll need it.

It has been shown in [4] that there exists a unique probability measure m_{β} on $\left[0, \frac{1}{\beta-1}\right]$ such that m_{β} is equivalent to the Lebesgue measure and $m_{\beta} \otimes \mathbb{P}$ is invariant and ergodic under K_{β}, where $\mathbb{P}=\prod_{1}^{\infty}\left\{\frac{1}{2}, \frac{1}{2}\right\}$.

2. Unique β-EXPANSIONS AND THEIR DYNAMICS

Let, as above, \mathcal{U}_{β} denote the set of $x \in(0,1 /(\beta-1))$ which have a unique β-expansion. Put $G=\frac{1+\sqrt{5}}{2}$.

Theorem 4 (Glendinning-Sidorov, 2001 [14]). We have the following dichotomy:

- The set \mathcal{U}_{β} is infinite countable if $\beta \in\left(G, \beta^{\prime}\right)$, and each unique expansion is eventually periodic.
- If $\beta \in\left(\beta^{\prime}, 2\right)$, then \mathcal{U}_{β} has the cardinality of the continuum and a positive Hausdorff dimension.

Here β^{\prime} is the Komornik-Loreti constant which is defined as follows: denote by

$$
\left(\mathfrak{m}_{k}\right)_{k=0}^{\infty}=0110100101101001 \ldots
$$

the Thue-Morse sequence, i.e., the fixed point of the substitution $0 \rightarrow 01,1 \rightarrow 10$.
The Komornik-Loreti constant $\beta^{\prime} \approx 1.78723$ is defined as the unique solution of the equation

$$
\sum_{k=1}^{\infty} \mathfrak{m}_{k} x^{-k}=1
$$

This constant proves to be the smallest β such that $1 \in \mathcal{U}_{\beta}$. Allouche and Cosnard [2] have proved that β^{\prime} is transcendental.

The topology of \mathcal{U}_{β} can be complicated, depending on β. For some β it is a Cantor set, for some it isn't. For more detail see [15].

The set \mathcal{U}_{β} is invariant under T_{β} (why?), hence we can consider $F_{\beta}=T_{\beta} \mid \mathcal{U}_{\beta}$. Recall the Sharkovskiĭ order on \mathbb{N} :

where the relation $a \triangleright b$ indicates that a comes before b in the ordering.

Theorem 5 ((Sharkovskiū's Theorem), see [5]). Let f be a continuous automorphism of a compact interval I. If $k \triangleright l$ in Sharkovkiǔ's ordering and if f has a point of smallest period k, then f also has a point of smallest period l.

Now we are ready to state the main theorem of the this section. Put

$$
U_{n}=\left\{\beta \in(1,2): F_{\beta} \text { has an } n \text {-cycle }\right\} .
$$

(By the result quoted above, $U_{2}=(G, 2)$, for instance.)
Theorem 6. There exist real numbers β_{n} in $(1,2)$ such that $U_{n}=\left(\beta_{n}, 2\right)$ for any $n \geq 2$. Furthermore, $\beta_{n}<\beta_{m}$ if and only if $n \triangleleft m$ in the sense of the Sharkovski乞 ordering.

For a proof see [1]. Thus, once an n-cycle occurs at some β, it lives for any larger β. We have

$$
G=\beta_{2}<\beta_{4}<\beta_{8}<\cdots<\beta^{\prime}<\cdots<\beta_{7}<\beta_{5}<\beta_{3} .
$$

There exists an explicit formula for the minimal polynomial for β_{n} for any natural $n \geq 2$ (written as $\left.n=2^{k}(2 \ell+1)\right)$ - see [1]. For the table of the first 8 values of β_{n} see Table 2.1 below.

β_{n}	period	minimal polynomial	numerical value	below $\beta^{\prime} ?$
$n=2$	01	$x^{2}-x-1$	1.61803	yes
$n=4$	0110	$x^{3}-2 x^{2}+x-1$	1.75488	yes
$n=8$	01101001	$x^{5}-2 x^{4}+x^{2}-1$	1.78460	yes
$n=6$	011010	$x^{6}-x^{5}-x^{4}-x^{2}-1$	1.78854	no
$n=7$	0110101	$x^{6}-2 x^{5}+x^{4}-x^{3}-1$	1.80509	no
$n=5$	01101	$x^{5}-x^{4}-x^{3}-x-1$	1.81240	no
$n=3$	011	$x^{3}-x^{2}-x-1$	1.83929	no

Table 2.1. The table of β_{n} for small values of n

Figure 7 indicates how this problem can be related to the classical one-dimensional setting.

More precisely, define the map $h:\{0,1\}^{\mathbb{N}} \rightarrow\{L, R\}^{\mathbb{N}}$ as follows (* denotes an arbitrary - but fixed - tail):

- $h(0 *)=\operatorname{Lh}(*)$;
- $h\left(1^{a} 0^{b} 1 *\right)=R L^{a-1} R L^{b-1} h(1 *)$ for $a, b \geq 1$;
- $h\left(1^{a} 0^{\infty}\right)=R L^{a-1} R L^{\infty}$;
- $h\left(1^{\infty}\right)=R L^{\infty}$.

Then h is one-to-one and maps the orbits of the shift on the set of unique β-expansions into the orbits of T_{β} which do not fall into C.

Let \prec denote the standard lexicographic order on the sequences of 0 s and 1 s , namely, $\varepsilon \prec \varepsilon^{\prime}$ if $\varepsilon_{i} \equiv \varepsilon_{i}^{\prime}, 1 \leq i \leq k$ and $\varepsilon_{k+1}<\varepsilon_{k+1}^{\prime}$.

Figure 7. The trapezoidal map S_{β} for $\beta=1.7$
Let \prec_{u} denote the unimodal order on the itineraries of T_{β}, i.e., $L \prec_{u} C \prec_{u} R$ and $\varepsilon \prec_{u} \varepsilon^{\prime}$ if $\varepsilon_{i} \equiv \varepsilon_{i}^{\prime}, 1 \leq i \leq k$ and either $\varepsilon_{k+1} \prec_{u} \varepsilon_{k+1}^{\prime}$ with $\#\left\{i \in[1, k]: \varepsilon_{i}=R\right\}$ even or $\varepsilon_{k+1} \succ_{u} \varepsilon_{k+1}^{\prime}$ with $\#\left\{i \in[1, k]: \varepsilon_{i}=R\right\}$ odd.

We have for $\varepsilon, \varepsilon^{\prime} \in \Sigma$,

$$
\varepsilon \prec \varepsilon^{\prime} \Longleftrightarrow h(\varepsilon) \prec_{u} h\left(\varepsilon^{\prime}\right) .
$$

The map h helps to prove our version of the Sharkovskiĭ theorem via the classical one.

2.1. Finite number of beta-expansions. Put

$$
\begin{aligned}
\mathcal{B}_{m}=\{ & \{\beta \in(G, 2): \exists x \in[0,1 /(\beta-1)] \text { which has exactly } m \\
& \text { expansions in base } \beta\} .
\end{aligned}
$$

Lemma 7. We have $\mathcal{B}_{m} \subset \mathcal{B}_{2}$ for $m \geq 3$ and $m \in \mathbb{N}$.
Hence if $\beta \notin \mathcal{B}_{2}$, then we have the following dichotomy: either a number $x \in J_{\beta}$ has a unique β-expansion or infinitely many of them.

Theorem 8 (N. Sidorov, 2009). The smallest element of \mathcal{B}_{2} is $\widetilde{\beta}_{2}$, the appropriate root of $x^{4}=2 x^{2}+x+1$, with the numerical value $\widetilde{\beta}_{2} \approx 1.71064$. Furthermore, $\mathcal{B}_{2} \cap\left(\widetilde{\beta}_{2}, \beta_{4}\right)=\emptyset$.

Here, as above, $\beta_{4} \approx 1.75488$ is the appropriate root of $x^{3}=2 x^{2}-x+1$.
Theorem 9. For $\beta \in\left(G, \beta^{\prime}\right)$ the strong dichotomy holds provided β is transcendental.
(Strong dichotomy means that any x has either a unique β-expansion or a continuum of them.)

So, we know that $\mathcal{B}_{2} \cap\left(G, \beta^{\prime}\right)$ is countable (lower order).
Theorem 10 (middle order). The set $\mathcal{B}_{2} \cap\left(\beta^{\prime}, \beta^{\prime}+\delta\right)$ has the cardinality of the continuum for any $\delta>0$.
Theorem 11 (top order). Let, as above, β_{3} denote the root of $x^{3}=x^{2}+x+1, T \approx 1.83929$. Then $\left[\beta_{3}, 2\right) \subset \mathcal{B}_{2}$, i.e., there always x which has exactly two β-expansions provided $\beta \geq \beta_{3}$.

A similar result holds for \mathcal{B}_{m} for any $m \geq 3$.

3. Topology of sums in nonnegative powers of $\beta>1$

Let $1<\beta<2$ be our parameter. Put

$$
\Lambda_{n}(\beta)=\left\{\sum_{k=0}^{n} a_{k} \beta^{k} \mid a_{k} \in\{-1,0,1\}\right\}
$$

and

$$
\Lambda(\beta)=\bigcup_{n \geq 1} \Lambda_{n}(\beta)
$$

Trivial properties of $\Lambda(\beta)$:

- countable;
- unbounded;
- symmetric about 0;

Question: what is the topology of $\Lambda(\beta)$? Is it dense? discrete? neither?
Theorem 12 (Garsia, 1962 [13]). Let β be a Pisot number, i.e, an algebraic integer whose other conjugates are less than 1 in modulus. Then $\Lambda(\beta)$ is uniformly discrete.

Proof. Without loss of generality we may assume $x, y \in \Lambda_{n}(\beta)$ and $x \neq y$. Then $x-y=$ $\sum_{0}^{n} \varepsilon_{k} \beta^{k}$ with $\varepsilon_{k} \in\{-2,-1,0,1,2\}$. Put

$$
P(t)=\sum_{0}^{n} \varepsilon_{k} t^{k}
$$

Let $\beta_{1}=\beta, \beta_{2}, \ldots, \beta_{d}$ be the conjugates of β. Since $P(\beta) \neq 0$, we have $P\left(\beta_{j}\right) \neq 0$ for all j. Hence $\prod_{1}^{d} P\left(\beta_{j}\right) \neq 0$. As this product is an integer (exercise!), we have

$$
\left|\prod_{1}^{d} P\left(\beta_{j}\right)\right| \geq 1
$$

Consequently,

$$
|P(\beta)| \geq \frac{1}{\left|\prod_{j \geq 2} P\left(\beta_{j}\right)\right|}
$$

Since $\left|\beta_{j}\right|<1$ for all $j \geq 2$ (Pisot!), we have

$$
\left|\sum_{i=0}^{n} \varepsilon_{i} \beta_{j}^{i}\right|=O(1)
$$

whence $|P(\beta)| \geq$ const.
Theorem 13 (folklore). If β is transcendental, then 0 is a limit point of $\Lambda(\beta)$.
Proof. Put

$$
D_{n}(\beta)=\left\{\sum_{k=0}^{n} a_{k} \beta^{k} \mid a_{k} \in\{0,1\}\right\}
$$

Since β is transcendental, $z_{n}(\beta):=\# D_{n}(\beta)=2^{n+1}$. On the other hand, $\max D_{n}(\beta)=$ $O\left(\beta^{n}\right) \ll 2^{n}$.

By the pigeonhole principle, there exist $x, y \in D_{n}(\beta)$ such that

$$
|x-y| \leq \mathrm{const} \cdot\left(\frac{\beta}{2}\right)^{n}=o(1)
$$

Since $x-y \in \Lambda_{n}(\beta)$, we are done.
Theorem 14 (Drobot, 1973 [6]). If 0 is a limit point of $\Lambda(\beta)$, then $\Lambda(\beta)$ is dense in \mathbb{R}.
Thus, if β is not of height 1 (i.e., is not a root of $-1,0,1$ polynomial), then $\Lambda(\beta)$ is dense. (For example, $\beta=\sqrt{2}$.)
Conjecture. If β is not Pisot, then $z_{n}(\beta) \gg \beta^{n}$ and consequently, $\Lambda(\beta)$ is dense.
Definition 15. We say that an algebraic $\beta>1$ is a Perron number if $|\alpha|<\beta$ for any conjugate α of β.
Theorem 16 (Sidorov and Solomyak, 2009 [21]). If β is not Perron, then $\Lambda(\beta)$ is dense in \mathbb{R}.

Proof. Here is a crude idea of our proof: assume there exists α which is a conjugate of β such that $\beta<|\alpha|$. It is easy to see that $z_{n}(\beta)=z_{n}(\alpha)$ (since there is a natural bijection between the sets $D_{n}(\beta)$ and $\left.D_{n}(\alpha)\right)$. Then we show that $z_{n}(\alpha) \geq$ const $\cdot|\alpha|^{n}$ (this is the key point of our proof), whence $z_{n}(\beta) \gg \beta^{n}$, and we apply the pigeonhole principle.

Let $D(\beta)$ denote the set of all finite $0-1$ sums in nonnegative powers of β, i.e., $D(\beta)=$ $\bigcup_{n>1} D_{n}(\beta)$. Since for any $E>0$ we have that $[0, E] \cap D(\beta)$ is finite, $D(\beta)$ is discrete.

Write

$$
D(\beta)=\left\{y_{0}(\beta)<y_{1}(\beta)<\ldots\right\}
$$

Put

$$
\begin{equation*}
\ell(\beta)=\liminf _{n}\left(y_{n+1}-y_{n}\right) \tag{3.1}
\end{equation*}
$$

and

$$
L(\beta)=\limsup \left(y_{n+1}-y_{n}\right)
$$

It is obvious that $\ell(\beta)=0$ if and only if 0 is a limit point of $\Lambda(\beta)$. Hence $\ell(\beta)=0 \Longleftrightarrow$ $\Lambda(\beta)$ is dense in \mathbb{R}.

Theorem 17 (Erdős and Komornik, 1998 [10]). For any $\beta<2^{1 / 4}$ we have $L(\beta)=0$.
It is also known that $L(\sqrt{2})=0$ and $L(\beta)=\beta$ for any $\beta \geq \frac{1+\sqrt{5}}{2}$ (see Problem Sheet 2). No $\beta \in\left(\sqrt{2}, \frac{1+\sqrt{5}}{2}\right)$ with $L(\beta)=0$ is known.

4. Bernoulli convolutions

Let $\beta>1$ and define the Bernoulli convolution ξ_{β} as follows. Let $b_{n}(\beta)$ be the two-point distribution such that $b_{n}\left(-\beta^{-n}\right)=b_{n}\left(\beta^{-n}\right)=1 / 2$. Now

$$
\xi_{\beta}=b_{1}(\beta) * b_{2}(\beta) * \ldots
$$

an infinite convolution. Note that $b_{1}(\beta) * b_{2}(\beta) * \cdots * b_{n}(\beta)$ is supported by the finite set $\left\{\sum_{k=1}^{n} \varepsilon_{k} \beta^{-k}: \varepsilon_{k} \in\{-1,1\}\right\}$ and each point has the measure 2^{-n}. (Some of them may coincide is β is algebraic.) Hence for any Borel set $E \subset \mathbb{R}$,

$$
\xi_{\beta}(E)=\mathbb{P}\left\{\left(a_{1}, a_{2}, \ldots\right) \in\{-1,1\}^{\mathbb{N}}: \sum_{k=1}^{\infty} a_{k} \beta^{-k} \in E\right\}
$$

where \mathbb{P} is the product measure on $\{-1,1\}^{\mathbb{N}}$ with $\mathbb{P}\left(a_{1}=-1\right)=\mathbb{P}\left(a_{1}=1\right)=1 / 2$.
The reason people have got interested in Bernoulli convolutions in the 1930s (see [23] for a comprehensive survey) is their especially nice Fourier transform:

$$
\begin{aligned}
\widehat{\xi}_{\beta}(x) & =\prod_{n=1}^{\infty} \frac{1}{2}\left(e^{-i \beta^{-n} x}+e^{i \beta^{-n} x}\right) \\
& =\prod_{n=1}^{\infty} \cos \left(\beta^{-n} x\right)
\end{aligned}
$$

We also define the measure ν_{β} in a similar way (replacing -1 with 0):

$$
\nu_{\beta}(E)=\mathbb{P}\left\{\left(a_{1}, a_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}: \sum_{k=1}^{\infty} a_{k} \beta^{-k} \in E\right\} .
$$

In other words, ν_{β} "measures" how many β-expansions fall into a given set. It is easy to see that ν_{β} is a scaled copy of ξ_{β} (exercise!), so their important properties should be the same.

Recall that a measure ν is called absolutely continuous (with respect to the Lebesgue measure \mathcal{L}) if $\mathcal{L}(E)=0$ implies $\nu(E)=0$. In this case there exists an integrable function h (the Radon-Nikodym density) such that $\nu(E)=\int_{E} h(x) d x$.

A measure ν is called singular if there exists a Borel set F such that $\nu(F)=0$ and $\mathcal{L}(F)=1$. (Here \mathcal{L} is a probability measure.)

Theorem 18 (Jessen-Wintner, 1935). For any $\beta>1$ the measure ν_{β} is either absolutely continuous or singular.

This result is often referred to as the Law of Pure Types.
Note that if $\beta=2$, then ν_{β} is none other than the Lebesgue measure. If $\beta>2$, then ν_{β} "sits" on a Cantor set of zero Lebesgue measure (exercise!) and hence is singular. But what happens if $\beta \in(1,2)$?

Definition 19. An algebraic integer $\beta>1$ is called a Pisot number (or a Pisot-Vijayaraghavan (PV) number) if all its other Galois conjugates are less than 1 in modulus.

The set of Pisot numbers is known to be closed (sic!). The smallest Pisot number is the real root of $x^{3}-x-1$. The smallest limit point of the set of Pisot numbers is the golden ratio. The main property of a Pisot number β is that there exists a sequence of positive integers z_{N} such that

$$
\begin{equation*}
\beta^{N}=z_{N}+O\left(\gamma^{N}\right), \quad N \rightarrow+\infty \tag{4.1}
\end{equation*}
$$

for some $\gamma \in(0,1)$.
Recall the Riemann-Lebesgue Lemma (or Theorem in some textbooks): for any f in $L^{1}(\mathbb{R})$ we have $\widehat{f}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$. Consequently, for any absolutely continuous measure ν we have $\widehat{\nu}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.

Theorem 20 (Erdős, 1939 [7]). For any Pisot $\beta \in(1,2)$ the Bernoulli convolution ξ_{β} is singular.
Proof. We will show that $\widehat{\xi}_{\beta}(x) \nrightarrow 0$ as $x \rightarrow+\infty$, which will imply that ξ_{β} cannot be absolutely continuous. Therefore, by the Law of Pure Types, it must be singular.

Put $x_{N}=2 \pi \beta^{N}$. We have

$$
\begin{aligned}
\widehat{\xi}_{\beta}\left(x_{N}\right) & =\prod_{n=1}^{\infty} \cos \left(2 \pi \beta^{N-n} x\right) \\
& =\cos \left(2 \pi \beta^{N}\right) \cdot \cos \left(2 \pi \beta^{N-1}\right) \cdots \cos (2 \pi \beta) \cdot \widehat{\xi}_{\beta}(2 \pi) .
\end{aligned}
$$

Since β is irrational, $\widehat{\xi}_{\beta}(2 \pi) \neq 0$ (check it!). In view of $(4.1), \cos \left(2 \pi \beta^{k}\right)=\cos \left(2 \pi \beta^{k}-\right.$ $\left.2 \pi z_{k}\right)=1-O\left(\gamma^{k}\right)$. Hence

$$
\left|\cos \left(2 \pi \beta^{N}\right) \cdot \cos \left(2 \pi \beta^{N-1}\right) \cdots \cos (2 \pi \beta)\right| \geq \text { const },
$$

whence

$$
\left|\widehat{\nu}_{\beta}\left(x_{N}\right)\right| \geq \text { const }^{\prime} .
$$

There exists an alternative proof [19] in which we construct a measure $\widetilde{\nu}_{\beta}$ which is equivalent to ν_{β} such that the greedy β-transformation preserves it, and it is ergodic.
Theorem 21 (B. Solomyak, 1995 [22]). For Lebesgue-a.e. $\beta \in(1,2)$ the Bernoulli convolution ξ_{β} is absolutely continuous.

There is only one explicit family of β for which it is known that ξ_{β} is absolutely continuous.

Definition 22. An algebraic integer $\beta>1$ is called a Garsia number if all its Galois conjugates are greater than 1 in modulus, and the constant term of its minimal polynomial is ± 2.

Such is $\sqrt{2}$ or the appropriate root of $x^{4}-x-2$, say.
Theorem 23 (Garsia, 1962 [13]). For any Garsia β the Bernoulli convolution ξ_{β} is absolutely continuous with a bounded density.

5. Multidimensional β-expansions

Let, as above, $\beta>1$ be our parameter. Consider a pair of maps (similitudes) in the real line:

$$
\begin{aligned}
f_{0}(x) & =x / \beta \\
f_{1}(x) & =x / \beta+1
\end{aligned}
$$

They constitute an iterated function system (IFS). That is, choose 0 as a starting point, and for any sequence $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ of 0 s and 1 s :

$$
x=\lim _{N \rightarrow+\infty} f_{\varepsilon_{1}} \ldots f_{\varepsilon_{N}}(0)
$$

The set of all x 's that are representable in such a form, is called the invariant set I_{β} of the IFS.

Unlike a general IFS (see, e.g., [11]), in our model this expression can be given in a very simple form:

$$
\begin{aligned}
f_{\varepsilon_{1}} \ldots f_{\varepsilon_{N}}(0) & =\beta^{-1} \varepsilon_{1}+\beta^{-1}\left(\varepsilon_{2}\right. \\
& \left.\left.+\beta^{-1}\left(\varepsilon_{3}+\cdots+\beta^{-1} \varepsilon_{N}\right) \ldots\right)\right) \\
& =\sum_{n=1}^{N} \varepsilon_{n} \beta^{-n}
\end{aligned}
$$

whence

$$
x=\lim _{N} \sum_{n=1}^{N} \varepsilon_{k} \beta^{-n}=\sum_{n=1}^{\infty} \varepsilon_{n} \beta^{-n}
$$

We see that the invariant set is none other than the set of β-expansions.
Let $\boldsymbol{p}_{0}, \ldots, \boldsymbol{p}_{k}$ now be points in \mathbb{R}^{d}. Consider the IFS - a general collection of similitudes:

$$
\begin{equation*}
f_{i}(\boldsymbol{x})=\beta^{-1} \boldsymbol{x}+\left(1-\beta^{-1}\right) \boldsymbol{p}_{i} \tag{5.1}
\end{equation*}
$$

Figure 8. The Sierpiński Gasket

Then any point \boldsymbol{x} in the invariant set has a representation in the form

$$
\boldsymbol{x}=(\beta-1) \sum_{n=1}^{\infty} \beta^{-n} \boldsymbol{a}_{n}
$$

where \boldsymbol{a}_{n} is one of the vertices \boldsymbol{p}_{i}.
Unlike the one-dimensional case, the invariant set J_{β} (which lies in the convex hull of the set $\left.\left\{\boldsymbol{p}_{0}, \ldots, \boldsymbol{p}_{k}\right\}\right)$ may have a complicated structure.

Let $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}$ be the vertices of a triangle Δ in \mathbb{R}^{2} (equilateral, say-this does not matter!). Note first that if $\beta \leq 3 / 2$, then $J_{\beta}=\Delta$. If $\beta \in(3 / 2,2)$, then we have both holes and overlaps.

The most famous case is $\beta=2$ - see Figure 8. Its Hausdorff dimension is known to be equal to $\log 3 / \log 2$.

Assume now $\beta \in(3 / 2,2)$. Let first $\beta=\frac{1+\sqrt{5}}{2}$. We get the following nice fractal - see Figure 9.

Theorem 24 (D. Broomhead, J. Montaldi and N. Sidorov, 2003 [3]). The invariant set J_{β} is totally self-similar, i.e.,

$$
f_{\varepsilon_{0}} \ldots f_{\varepsilon_{n-1}}\left(J_{\beta}\right)=f_{\varepsilon_{0}} \ldots f_{\varepsilon_{n-1}}(\Delta) \cap J_{\beta}
$$

for any $\varepsilon_{0}, \ldots, \varepsilon_{n-1}$.

Figure 9. The Golden Gasket

Theorem 25 (D. Broomhead, J. Montaldi and N. Sidorov, 2003 [3]).

$$
\operatorname{dim}_{H}\left(J_{\beta}\right)=-\frac{\log \tau}{\log \beta}=1.93063 \ldots
$$

where where $\tau \approx 0.39493$ is a root of the polynomial $3 z^{3}-3 z+1$, namely,

$$
\tau=\frac{2}{\sqrt{3}} \cos (7 \pi / 18)
$$

Theorem 26 (D. Broomhead, J. Montaldi and N. Sidorov, 2003 [3]). If the invariant set J_{β} is totally self-similar for some $\beta \in(3 / 2,2)$, then β satisfies

$$
\beta^{m}=\beta^{m-1}+\beta^{m-2}+\cdots+\beta+1
$$

for some $m \geq 2$ (multinacci numbers).
Here is a sketch of the proof of the key Theorem 24 (for an arbitrary multinacci β). Let x, y, z be the distances to the sides of Δ so that $x+y+z=1$. These are called barycentric coordinates.

Then the f_{i} are linear maps in barycentric coordinates, and one can easily check that

$$
\begin{aligned}
f_{0} & =\left(\begin{array}{ccc}
1 & 1-\lambda & 1-\lambda \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right), \\
f_{1} & =\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
1-\lambda & 1 & 1-\lambda \\
0 & 0 & \lambda
\end{array}\right), \\
f_{2} & =\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
1-\lambda & 1-\lambda & 1
\end{array}\right),
\end{aligned}
$$

where $\lambda=\beta^{-1}$. Moreover,

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\lim _{N \rightarrow+\infty} f_{\varepsilon_{0}} \ldots f_{\varepsilon_{N}}(\mathbf{0}) \\
& =\left(\begin{array}{c}
(\beta-1) \sum_{k=1}^{\infty} a_{k} \beta^{-k} \\
(\beta-1) \sum_{k=1}^{\infty} b_{k} \beta^{-k} \\
(\beta-1) \sum_{k=1}^{\infty} c_{k} \beta^{-k}
\end{array}\right),
\end{aligned}
$$

where $a_{k}, b_{k}, c_{k} \in\{0,1\}$ and $a_{k}+b_{k}+c_{k}=1$. (In fact, $a_{k}=\chi_{\left\{\varepsilon_{k}=0\right\}}, \chi_{\left\{\varepsilon_{k}=1\right\}}, \chi_{\left\{\varepsilon_{k}=2\right\}}$.) Let $\Delta_{0}=\Delta$, and

$$
\Delta_{n}=\bigcup_{i=0}^{2} f_{i}\left(\Delta_{n-1}\right), \quad n \geq 1
$$

The central hole $H_{0}:=\Delta \backslash \Delta_{1}$. Then each hole is a subset of an image of H_{0}.
The key to the proof is the fact that for the multinacci β any image of the central hole is a hole. This is easily equivalent to the total self-similarity of J_{β}.

It suffices to show that $H_{n}:=f_{\varepsilon_{0}} \ldots f_{\varepsilon_{n-1}}\left(H_{0}\right)$ has an empty intersection with Δ_{n+1}. This is equivalent to the fact that the system

$$
\begin{aligned}
\beta^{-n-1}+\sum_{1}^{n-1} a_{k} \beta^{-k} & >\sum_{1}^{n} a_{k}^{\prime} \beta^{-k} \\
\beta^{-n-1}+\sum_{1}^{n-1} b_{k} \beta^{-k} & >\sum_{1}^{n} b_{k}^{\prime} \beta^{-k} \\
\beta^{-n-1}+\sum_{1}^{n-1} c_{k} \beta^{-k} & >\sum_{1}^{n} c_{k}^{\prime} \beta^{-k}
\end{aligned}
$$

does not have a solution. This in turn follows from
Theorem 27 (P. Erdős, I. Joó, M. Joó, 1992 [8]). Let $\ell(\beta)$ be given by (3.1). Then $\ell(\beta)=\beta^{-1}$ if β is a multinacci number.

Figure 10. The set of uniqueness superimposed on the golden gasket
In other words, β^{-1} is the exact separation constant in the Garsia separation lemma (Theorem 12) if β is multinacci. See Figure 10 for the set of uniqueness for the golden gasket.

The main problem remaining is to determine for which β the attractor J_{β} has positive two-dimensional Lebesgue measure and for which zero Lebesgue measure.
Theorem 28. [3] For β sufficiently close to $3 / 2$ the measure is positive and, moreover, the interior of J_{β} is nonempty. For $\beta>\sqrt{3}$ the measure of J_{β} is zero.

The numerics suggests the following
Conjecture. (1) For each $\beta \in\left(\frac{3}{2}, \frac{1+\sqrt{5}}{2}\right)$ the attractor J_{β} has a nonempty interior - see Figure 11.
(2) For each $\beta \in\left(\frac{1+\sqrt{5}}{2}, \sqrt{3}\right)$ it has an empty interior - see Figure 12.

Return to the general setting (5.1). There exists an analogue of Theorem 1:
Theorem 29 (Sidorov, 2007 [20]). For each $\boldsymbol{p}_{0}, \ldots, \boldsymbol{p}_{m-1}$ there exists $\beta_{0}>1$ such that for any $\beta>\beta_{0}$,
(1) There are no holes in J_{β}.
(2) Each point \boldsymbol{x} in the convex hull of $\left\{\boldsymbol{p}_{0}, \ldots, \boldsymbol{p}_{m-1}\right\}$ except when \boldsymbol{x} is \boldsymbol{p}_{i}, has $2^{\aleph_{0}}$ distinct addresses.

Thus, β_{0} in this theorem is a direct analogue of the golden ratio in the one-dimensional setting. To determine the sharp value of β_{0} for a given collection $\left\{\boldsymbol{p}_{0}, \ldots, \boldsymbol{p}_{m-1}\right\}$ is an interesting problem.

Figure 11. The invariant set J_{β} for $\beta=1.54$

Figure 12. The invariant set J_{β} for $\beta=1.69$

There also exists a multidimensional generalization of Theorem 3:
Theorem 30. [20] Assume that the attractor J_{β} has no holes plus some technical condition. Then Lebesgue-a.e. \boldsymbol{x} in the convex hull of the \boldsymbol{p}_{i} has a continuum of distinct β-expansions, and the exceptional set has Hausdorff dimension strictly less than d, the dimension of the convex hull of the \boldsymbol{p}_{i}.

References

[1] J.-P. Allouche, M. Clarke and N. Sidorov, Periodic unique beta-expansions: the Sharkovskii ordering Ergodic Theory Dynam. Systems 29 (2009), 1055-1074.
[2] J.-P. Allouche and M. Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly 107 (2000), 448-449.
[3] D. Broomhead, J. Montaldi and N. Sidorov, Golden gaskets: variations on the Sierpinski sieve, Nonlinearity 17 (2004), 1455-1480.
[4] K. Dajani and M. de Vries, Invariant densities for random β-expansions, J. Eur. Math. Soc. 9 (2007), 157-176.
[5] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Company, 1989.
[6] V. Drobot, On sums of powers of a number, Amer. Math. Monthly 80 (1973), 42-44.
[7] P. Erdös, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974-976.
[8] P. Erdős, I. Joó and M. Joó, On a problem of Tamás Varga. Bull. Soc. Math. Fr. 120 (1992), 507-521.
[9] P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions $1=\sum_{i=1}^{\infty} q^{-n_{i}}$ and related problems, Bull. Soc. Math. Fr. 118 (1990), 377-390.
[10] P. Erdős and V. Komornik, Developments in non-integer bases, Acta Math. Hung. 79 (1998), 57-83.
[11] K. Falconer, Fractal Geometry. J. Wiley, Chichester (1990).
[12] D.-J. Feng and N. Sidorov, Growth rate for beta-expansions, http://arxiv.org/abs/0902.0488, to appear in Monatsh. Math.
[13] A. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409-432.
[14] P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Letters 8 (2001), 535-543.
[15] V. Komornik and M. de Vries, Unique expansions of real numbers, 221 (2009), 390-427.
[16] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416.
[17] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493.
[18] N. Sidorov, Almost every number has a continuum of β-expansions, Amer. Math. Monthly 110 (2003), 838-842.
[19] N. Sidorov, Ergodic-theoretic properties of certain Bernoulli convolutions, Acta Math. Hungar. 101 (2003), 345-355.
[20] N. Sidorov, Combinatorics of linear iterated function systems with overlaps, Nonlinearity 20 (2007), 1299-1312.
[21] N. Sidorov and B. Solomyak, On the topology of sums in powers of an algebraic number, http://arxiv.org/abs/0909.3324.
[22] B. Solomyak, On the random series $\sum \pm \lambda^{i}$ (an Erdos problem), Annals of Math. 142 (1995), 611-625.
[23] B. Solomyak, Notes on Bernoulli convolutions, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, (Amer. Math. Soc., Providence, RI, 2004), vol. 72 of Proc. Sympos. Pure Math. pp. 207-230.

School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: Sidorov@manchester.ac.uk

