
EXPANSIONS IN NON-INTEGER BASES

NIKITA SIDOROV

1. Introduction into β-expansions

Representations of real numbers in non-integer bases were introduced by Rényi [17] and
first studied by Rényi and by Parry [16].

Let first β be an integer greater than 1. Then any number x ∈ [0, 1) can be represented
in the form

x =

∞∑

n=1

anβ−n, an ∈ {0, 1, . . . , β}.

This representation is unique, except for a countable set of x. The corresponding map here
is τβ : [0, 1) → [0, 1) defined by the formula

τβ(x) = βx mod 1.

This map acts as the shift on the expansions, i.e., an(τβx) = an+1(x). The properties of
this map are well known; in particular, it preserves the Lebesgue measure on the interval,
and the corresponding dynamical system has various nice properties. See Figure 1 for the
case β = 2.

Assume now β > 1 to be non-integer. We call any representation of the form

x =
∞∑

n=1

anβ−n, an ∈ {0, 1, . . . , ⌊β⌋ − 1}.

a β-expansion of x. (Here ⌊t⌋ denotes the integer part of t.) For instance, for β ∈ (1, 2) –
which is going to be our main example – the set of “digits” is {0, 1}, i.e., like the one for

the binary expansions. It is easy to show “by hand” that any x ∈
[
0, ⌊β⌋

β−1

]
has at least one

β-expansion.
We will do it in a way similar to the standard doubling map. Let us assume for simplicity

that 1 < β < 2 and introduce the following multivalued map:

Tβ(x) =





βx, x ∈
[
0, 1

β

]

βx or βx − 1, x ∈
(

1
β
, 1

β(β−1)

)

βx − 1, x ∈
[

1
β(β−1)

, 1
β−1

]

(see Figure 2).
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Figure 1. The doubling map

We see that if x ∈
[
0, 1

β

)
or x ∈

(
1

β(β−1)
, 1

β−1

]
, then Tβ(x) is uniquely defined. However,

whenever x lies in the switch region
[

1
β
, 1

β(β−1)

]
, we have a choice between 0 and 1.

Figure 3 depicts a branching pattern that occurs for the multivalued map Tβ . We will
see that typically it is indeed a binary tree.

If we always choose 1 (or, in the general case, the largest possible “digit”), such an
expansion is called greedy. The map Tβ becomes the β-transformation τβx = βx mod 1
(restricted to [0, 1)) – see Figure 4.

Although τβ does not preserve the Lebesgue measure, there exists a bounded positive
density function hβ such that the absolutely continuous measure µβ given by hβ is τβ-
invariant (see [16]). The dynamical system ([0, 1), µβ, τβ) is well studied, and its properties
are similar to the ones of the doubling map.

Theorem 1. ([9]) If β < 1+
√

5
2

, then any x ∈ (0, 1/(β − 1)) has a continuum of distinct
β-expansions.

Proof. One can check (exercise!) that if x < 1/β, then it is impossible that Tβ(x) >
1/(β(β − 1)) – see Figure 5. Hence eventually the trajectory of any point bifurcates, and
the procedure repeats for each of the images, ad infinitum. �
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Figure 2. Multivalued β-transformation Tβ
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bn+1 bn+2 . . . bn′

2

x

Figure 3. Branching and bifurcations

A quantitative version of this result has been recently proven by Feng and the author.
Put

Nn(x; β) = #

{
(a1, . . . , an) ∈ {0, 1}n | ∃(an+1, an+2, . . . ) : x =

∞∑

k=1

akβ
−k

}
.
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Figure 4. The β-transformation τβ

Theorem 2. ([12]) Let β be an arbitrary number in
(
1, 1+

√
5

2

)
. Then there exists c =

c(β) > 0 such that

lim inf
n→∞

logNn(x; β)

n
≥ c for any x ∈

(
0,

1

β − 1

)
.

What about when β is greater than the golden ratio? In this case one can show (exercise!)
that there exists a point x = x(β) < 1/β such that Tβ(x) > 1/(β(β − 1)), and T 2

β (x) = x
(a 2-cycle) – see Figure 6.

Hence the β-expansion of such a point is necessarily 010101 . . . We will discuss unique
β-expansions in detail in the next section.

Thus, it is not true that every internal point has a continuum of β-expansions if β is
between the golden ratio and 2. However, a weaker result is still valid:

Theorem 3. (Sidorov [18, 19])

(1) Almost every point x ∈ (0, 1/(β − 1)) has a continuum of β-expansions.
(2) Furthermore, the set of exceptions has Hausdorff dimension strictly less than 1.

Proof. We will prove the first part. Our first goal is to show that a.e. x ∈ (0, 1) has at

least two different β-expansions. We may assume that β ≥ 1+
√

5
2

.
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0 1/β 1/(β − 1)1/(β(β − 1))

Figure 5. The β-transformation Tβ for β = 1.25

0 1/(β − 1)

Figure 6. The 2-cycle
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Since β belongs to [(1 +
√

5)/2, 2), there exists m = m(β) ≥ 2 such that

(1.1) 1 + β−m+1 <
1

β − 1
;

specifically, we can take

m =

⌊
logβ

β − 1

2 − β

⌋
+ 1 ≥ 2

(for β = (1 +
√

5)/2 we have β − 1 = β−1, 2 − β = β−2, whence logβ
β−1
2−β

= 1).

So, we consider x in (0, 1), and assume that its greedy expansion is of the form

(ε1, . . . , εn, 1, 0, . . . , 0︸ ︷︷ ︸
m−1

, εn+m+1, . . . ).

We can construct a different β-expansion for x. Namely, if x′ =
∑n

j=1 εjβ
−j, then

x − x′ = β−n−1 +
∞∑

j=n+m+1

εjβ
−j ∈ [β−n−1, β−n−1 + β−n−m],

because
∑∞

n+m+1 εjβ
−j ≤ β−n−m (a property of the greedy expansions). On the other

hand, we infer from (1.1) that

β−n−1 + β−n−m < β−n−2 + β−n−3 + · · · =
β−n−1

β − 1
,

whence
x − x′ < β−n−2 + β−n−3 + · · ·

as well. This means that if we put ε′n+1 = 0, it is possible to find (ε′n+2, ε
′
n+3, . . . ) in Σ such

that x =
∑∞

j=1 ε′jβ
−j. By our construction, εn+1 6= ε′n+1.

Thus, the set Uβ – all x which have a unique β-expansion – has measure zero. Now, if
for some x its tree of β-expansions (see Figure 3) is not the full binary tree, it means that
one of the branches “flatlines”. This implies that for one of β-expansions of x, say, for
(ε1, ε2, . . . ), there exists k such that (εk, εk+1, . . . ) is a unique expansion (since it does not
bifurcates any further).

Since any shift of a β-expansion is either βx or βx − 1, we infer that x belongs to a
scaled copy of Uβ. Any such copy has zero measure and there is only a countable set of
them for x to lie in. Hence the set of x whose branching is not full is a zero measure set.
In particular, a.e. x has a continuum of β-expansions. �

Finally, we would like to mention random β-expansions. Again, we assume for simplicity
that 1 < β < 2. Put Ω = {0, 1}N, and we regard 0 as “tails” and 1 as “heads”. We introduce
the random β-transformation Kβ :

[
0, 1

β−1

]
× Ω →

[
0, 1

β−1

]
× Ω as follows:

Kβ(x, ω) =





(βx, ω), x ∈
[
0, 1

β

)

(βx − ω1, σ(ω)), x ∈
[

1
β
, 1

β(β−1)

]

(βx − 1, ω), x ∈
(

1
β(β−1)

, 1
β−1

]
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Here σ : Ω → Ω is the one-sided shift, i.e., σ(ω1, ω2, ω3, . . . ) = (ω2, ω3, . . . ). In other words,
if we are outside the switch region, we just apply βx or βx − 1 respectively and do not
touch the “coin”. If we are in the switch region, we flip a coin (= check ω1) and apply the
corresponding map, after which we shift ω for the next flip, whenever we’ll need it.

It has been shown in [4] that there exists a unique probability measure mβ on
[
0, 1

β−1

]

such that mβ is equivalent to the Lebesgue measure and mβ ⊗ P is invariant and ergodic
under Kβ , where P =

∏∞
1

{
1
2
, 1

2

}
.

2. Unique β-expansions and their dynamics

Let, as above, Uβ denote the set of x ∈ (0, 1/(β − 1)) which have a unique β-expansion.

Put G = 1+
√

5
2

.

Theorem 4 (Glendinning-Sidorov, 2001 [14]). We have the following dichotomy:

• The set Uβ is infinite countable if β ∈ (G, β ′), and each unique expansion is even-
tually periodic.

• If β ∈ (β ′, 2), then Uβ has the cardinality of the continuum and a positive Hausdorff
dimension.

Here β ′ is the Komornik-Loreti constant which is defined as follows: denote by

(mk)
∞
k=0 = 0110 1001 0110 1001 . . .

the Thue-Morse sequence, i.e., the fixed point of the substitution 0 → 01, 1 → 10.
The Komornik-Loreti constant β ′ ≈ 1.78723 is defined as the unique solution of the

equation
∞∑

k=1

mkx
−k = 1.

This constant proves to be the smallest β such that 1 ∈ Uβ . Allouche and Cosnard [2] have
proved that β ′ is transcendental.

The topology of Uβ can be complicated, depending on β. For some β it is a Cantor set,
for some it isn’t. For more detail see [15].

The set Uβ is invariant under Tβ (why?), hence we can consider Fβ = Tβ|Uβ
. Recall the

Sharkovskĭı order on N:

3 ⊲ 5 ⊲ 7 ⊲ · · · ⊲ 2m + 1 ⊲ · · ·
⊲ 2 · 3 ⊲ 2 · 5 ⊲ 2 · 7 ⊲ · · · ⊲ 2 · (2m + 1) ⊲ · · ·
⊲ 4 · 3 ⊲ 4 · 5 ⊲ 4 · 7 ⊲ · · · ⊲ 4 · (2m + 1) ⊲ · · ·

...
...

...
...

⊲ 2n · 3 ⊲ 2n · 5 ⊲ 2n · 7 ⊲ · · · ⊲ 2n · (2m + 1) ⊲ · · ·
...

...
...

...
· · · ⊲ 8 ⊲ 4 ⊲ 2 ⊲ 1,

where the relation a ⊲ b indicates that a comes before b in the ordering.
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Theorem 5 ((Sharkovskĭı’s Theorem), see [5]). Let f be a continuous automorphism
of a compact interval I. If k ⊲ l in Sharkovkĭı’s ordering and if f has a point of smallest
period k, then f also has a point of smallest period l.

Now we are ready to state the main theorem of the this section. Put

Un = {β ∈ (1, 2) : Fβ has an n-cycle}.
(By the result quoted above, U2 = (G, 2), for instance.)

Theorem 6. There exist real numbers βn in (1, 2) such that Un = (βn, 2) for any n ≥ 2.
Furthermore, βn < βm if and only if n ⊳ m in the sense of the Sharkovskĭı ordering.

For a proof see [1]. Thus, once an n-cycle occurs at some β, it lives for any larger β. We
have

G = β2 < β4 < β8 < · · · < β ′ < · · · < β7 < β5 < β3.

There exists an explicit formula for the minimal polynomial for βn for any natural n ≥ 2
(written as n = 2k(2ℓ + 1)) – see [1]. For the table of the first 8 values of βn see Table 2.1
below.

βn period minimal polynomial numerical value below β ′?
n = 2 01 x2 − x − 1 1.61803 yes
n = 4 0110 x3 − 2x2 + x − 1 1.75488 yes
n = 8 0110 1001 x5 − 2x4 + x2 − 1 1.78460 yes
n = 6 011010 x6 − x5 − x4 − x2 − 1 1.78854 no
n = 7 0110101 x6 − 2x5 + x4 − x3 − 1 1.80509 no
n = 5 01101 x5 − x4 − x3 − x − 1 1.81240 no
n = 3 011 x3 − x2 − x − 1 1.83929 no

Table 2.1. The table of βn for small values of n

Figure 7 indicates how this problem can be related to the classical one-dimensional
setting.

More precisely, define the map h : {0, 1}N → {L, R}N as follows (∗ denotes an arbitrary
– but fixed – tail):

• h(0∗) = Lh(∗);
• h(1a0b1∗) = RLa−1RLb−1h(1∗) for a, b ≥ 1;
• h(1a0∞) = RLa−1RL∞;
• h(1∞) = RL∞.

Then h is one-to-one and maps the orbits of the shift on the set of unique β-expansions
into the orbits of Tβ which do not fall into C.

Let ≺ denote the standard lexicographic order on the sequences of 0s and 1s, namely,
ε ≺ ε′ if εi ≡ ε′i, 1 ≤ i ≤ k and εk+1 < ε′k+1.



EXPANSIONS IN NON-INTEGER BASES 9

0

1

1
β

1
β(β−1)

1
β−1

L C R

Figure 7. The trapezoidal map Sβ for β = 1.7

Let ≺u denote the unimodal order on the itineraries of Tβ, i.e., L ≺u C ≺u R and
ε ≺u ε′ if εi ≡ ε′i, 1 ≤ i ≤ k and either εk+1 ≺u ε′k+1 with #{i ∈ [1, k] : εi = R} even or
εk+1 ≻u ε′k+1 with #{i ∈ [1, k] : εi = R} odd.

We have for ε, ε′ ∈ Σ,

ε ≺ ε′ ⇐⇒ h(ε) ≺u h(ε′).

The map h helps to prove our version of the Sharkovskĭı theorem via the classical one.

2.1. Finite number of beta-expansions. Put

Bm = {β ∈ (G, 2) : ∃x ∈ [0, 1/(β − 1)]which has exactly m

expansions in base β}.
Lemma 7. We have Bm ⊂ B2 for m ≥ 3 and m ∈ N.

Hence if β /∈ B2, then we have the following dichotomy: either a number x ∈ Jβ has a

unique β-expansion or infinitely many of them.
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Theorem 8 (N. Sidorov, 2009). The smallest element of B2 is β̃2, the appropriate root of

x4 = 2x2 + x + 1, with the numerical value β̃2 ≈ 1.71064. Furthermore, B2 ∩ (β̃2, β4) = ∅.
Here, as above, β4 ≈ 1.75488 is the appropriate root of x3 = 2x2 − x + 1.

Theorem 9. For β ∈ (G, β ′) the strong dichotomy holds provided β is transcendental.

(Strong dichotomy means that any x has either a unique β-expansion or a continuum of
them.)

So, we know that B2 ∩ (G, β ′) is countable (lower order).

Theorem 10 (middle order). The set B2∩ (β ′, β ′ + δ) has the cardinality of the continuum
for any δ > 0.

Theorem 11 (top order). Let, as above, β3 denote the root of x3 = x2+x+1, T ≈ 1.83929.
Then [β3, 2) ⊂ B2, i.e., there always x which has exactly two β-expansions provided β ≥ β3.

A similar result holds for Bm for any m ≥ 3.

3. Topology of sums in nonnegative powers of β > 1

Let 1 < β < 2 be our parameter. Put

Λn(β) =

{
n∑

k=0

akβ
k | ak ∈ {−1, 0, 1}

}

and
Λ(β) =

⋃

n≥1

Λn(β).

Trivial properties of Λ(β):

• countable;
• unbounded;
• symmetric about 0;

Question: what is the topology of Λ(β)? Is it dense? discrete? neither?

Theorem 12 (Garsia, 1962 [13]). Let β be a Pisot number, i.e, an algebraic integer whose
other conjugates are less than 1 in modulus. Then Λ(β) is uniformly discrete.

Proof. Without loss of generality we may assume x, y ∈ Λn(β) and x 6= y. Then x − y =∑n
0 εkβ

k with εk ∈ {−2,−1, 0, 1, 2}. Put

P (t) =
n∑

0

εkt
k.

Let β1 = β, β2, . . . , βd be the conjugates of β. Since P (β) 6= 0, we have P (βj) 6= 0 for all j.

Hence
∏d

1 P (βj) 6= 0. As this product is an integer (exercise!), we have
∣∣∣∣∣

d∏

1

P (βj)

∣∣∣∣∣ ≥ 1.
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Consequently,

|P (β)| ≥ 1∣∣∣
∏

j≥2 P (βj)
∣∣∣
.

Since |βj| < 1 for all j ≥ 2 (Pisot!), we have
∣∣∣∣∣

n∑

i=0

εiβ
i
j

∣∣∣∣∣ = O(1),

whence |P (β)| ≥ const. �

Theorem 13 (folklore). If β is transcendental, then 0 is a limit point of Λ(β).

Proof. Put

Dn(β) =

{
n∑

k=0

akβ
k | ak ∈ {0, 1}

}
.

Since β is transcendental, zn(β) := #Dn(β) = 2n+1. On the other hand, maxDn(β) =
O(βn) ≪ 2n.

By the pigeonhole principle, there exist x, y ∈ Dn(β) such that

|x − y| ≤ const ·
(

β

2

)n

= o(1).

Since x − y ∈ Λn(β), we are done. �

Theorem 14 (Drobot, 1973 [6]). If 0 is a limit point of Λ(β), then Λ(β) is dense in R.

Thus, if β is not of height 1 (i.e., is not a root of −1, 0, 1 polynomial), then Λ(β) is dense.
(For example, β =

√
2.)

Conjecture. If β is not Pisot, then zn(β) ≫ βn and consequently, Λ(β) is dense.

Definition 15. We say that an algebraic β > 1 is a Perron number if |α| < β for any
conjugate α of β.

Theorem 16 (Sidorov and Solomyak, 2009 [21]). If β is not Perron, then Λ(β) is dense
in R.

Proof. Here is a crude idea of our proof: assume there exists α which is a conjugate of β
such that β < |α|. It is easy to see that zn(β) = zn(α) (since there is a natural bijection
between the sets Dn(β) and Dn(α)). Then we show that zn(α) ≥ const · |α|n (this is the
key point of our proof), whence zn(β) ≫ βn, and we apply the pigeonhole principle. �

Let D(β) denote the set of all finite 0-1 sums in nonnegative powers of β, i.e., D(β) =⋃
n≥1 Dn(β). Since for any E > 0 we have that [0, E] ∩ D(β) is finite, D(β) is discrete.
Write

D(β) = {y0(β) < y1(β) < . . . }.
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Put

(3.1) ℓ(β) = lim inf
n

(yn+1 − yn)

and

L(β) = lim sup
n

(yn+1 − yn).

It is obvious that ℓ(β) = 0 if and only if 0 is a limit point of Λ(β). Hence ℓ(β) = 0 ⇐⇒
Λ(β) is dense in R.

Theorem 17 (Erdős and Komornik, 1998 [10]). For any β < 21/4 we have L(β) = 0.

It is also known that L(
√

2) = 0 and L(β) = β for any β ≥ 1+
√

5
2

(see Problem Sheet 2).

No β ∈
(√

2, 1+
√

5
2

)
with L(β) = 0 is known.

4. Bernoulli convolutions

Let β > 1 and define the Bernoulli convolution ξβ as follows. Let bn(β) be the two-point
distribution such that bn(−β−n) = bn(β−n) = 1/2. Now

ξβ = b1(β) ∗ b2(β) ∗ . . . ,

an infinite convolution. Note that b1(β) ∗ b2(β) ∗ · · · ∗ bn(β) is supported by the finite set{∑n
k=1 εkβ

−k : εk ∈ {−1, 1}
}

and each point has the measure 2−n. (Some of them may
coincide is β is algebraic.) Hence for any Borel set E ⊂ R,

ξβ(E) = P

{
(a1, a2, . . . ) ∈ {−1, 1}N :

∞∑

k=1

akβ
−k ∈ E

}
,

where P is the product measure on {−1, 1}N with P(a1 = −1) = P(a1 = 1) = 1/2.
The reason people have got interested in Bernoulli convolutions in the 1930s (see [23]

for a comprehensive survey) is their especially nice Fourier transform:

ξ̂β(x) =

∞∏

n=1

1

2

(
e−iβ−nx + eiβ−nx

)

=

∞∏

n=1

cos(β−nx).

We also define the measure νβ in a similar way (replacing −1 with 0):

νβ(E) = P

{
(a1, a2, . . . ) ∈ {0, 1}N :

∞∑

k=1

akβ
−k ∈ E

}
.

In other words, νβ “measures” how many β-expansions fall into a given set. It is easy to
see that νβ is a scaled copy of ξβ (exercise!), so their important properties should be the
same.
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Recall that a measure ν is called absolutely continuous (with respect to the Lebesgue
measure L) if L(E) = 0 implies ν(E) = 0. In this case there exists an integrable function
h (the Radon-Nikodym density) such that ν(E) =

∫
E

h(x) dx.
A measure ν is called singular if there exists a Borel set F such that ν(F ) = 0 and

L(F ) = 1. (Here L is a probability measure.)

Theorem 18 (Jessen-Wintner, 1935). For any β > 1 the measure νβ is either absolutely
continuous or singular.

This result is often referred to as the Law of Pure Types.
Note that if β = 2, then νβ is none other than the Lebesgue measure. If β > 2, then

νβ “sits” on a Cantor set of zero Lebesgue measure (exercise!) and hence is singular. But
what happens if β ∈ (1, 2)?

Definition 19. An algebraic integer β > 1 is called a Pisot number (or a Pisot-Vijayaraghavan
(PV) number) if all its other Galois conjugates are less than 1 in modulus.

The set of Pisot numbers is known to be closed (sic!). The smallest Pisot number is the
real root of x3 − x − 1. The smallest limit point of the set of Pisot numbers is the golden
ratio. The main property of a Pisot number β is that there exists a sequence of positive
integers zN such that

(4.1) βN = zN + O(γN), N → +∞
for some γ ∈ (0, 1).

Recall the Riemann-Lebesgue Lemma (or Theorem in some textbooks): for any f in

L1(R) we have f̂(x) → 0 as x → ±∞. Consequently, for any absolutely continuous
measure ν we have ν̂(x) → 0 as x → ±∞.

Theorem 20 (Erdős, 1939 [7]). For any Pisot β ∈ (1, 2) the Bernoulli convolution ξβ is
singular.

Proof. We will show that ξ̂β(x) 6→ 0 as x → +∞, which will imply that ξβ cannot be
absolutely continuous. Therefore, by the Law of Pure Types, it must be singular.

Put xN = 2πβN . We have

ξ̂β(xN ) =
∞∏

n=1

cos(2πβN−nx)

= cos(2πβN) · cos(2πβN−1) · · · cos(2πβ) · ξ̂β(2π).

Since β is irrational, ξ̂β(2π) 6= 0 (check it!). In view of (4.1), cos(2πβk) = cos(2πβk −
2πzk) = 1 − O(γk). Hence

| cos(2πβN) · cos(2πβN−1) · · · cos(2πβ)| ≥ const,

whence
|ν̂β(xN )| ≥ const′.

�
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There exists an alternative proof [19] in which we construct a measure ν̃β which is
equivalent to νβ such that the greedy β-transformation preserves it, and it is ergodic.

Theorem 21 (B. Solomyak, 1995 [22]). For Lebesgue-a.e. β ∈ (1, 2) the Bernoulli convo-
lution ξβ is absolutely continuous.

There is only one explicit family of β for which it is known that ξβ is absolutely contin-
uous.

Definition 22. An algebraic integer β > 1 is called a Garsia number if all its Galois
conjugates are greater than 1 in modulus, and the constant term of its minimal polynomial
is ±2.

Such is
√

2 or the appropriate root of x4 − x − 2, say.

Theorem 23 (Garsia, 1962 [13]). For any Garsia β the Bernoulli convolution ξβ is abso-
lutely continuous with a bounded density.

5. Multidimensional β-expansions

Let, as above, β > 1 be our parameter. Consider a pair of maps (similitudes) in the real
line:

f0(x) = x/β,

f1(x) = x/β + 1.

They constitute an iterated function system (IFS). That is, choose 0 as a starting point,
and for any sequence (ε1, ε2, . . . ) of 0s and 1s:

x = lim
N→+∞

fε1
. . . fεN

(0).

The set of all x’s that are representable in such a form, is called the invariant set Iβ of the
IFS.

Unlike a general IFS (see, e.g., [11]), in our model this expression can be given in a very
simple form:

fε1
. . . fεN

(0) = β−1ε1 + β−1(ε2

+ β−1(ε3 + · · ·+ β−1εN) . . . ))

=

N∑

n=1

εnβ−n,

whence

x = lim
N

N∑

n=1

εkβ
−n =

∞∑

n=1

εnβ−n.

We see that the invariant set is none other than the set of β-expansions.
Let p0, . . . , pk now be points in R

d. Consider the IFS – a general collection of similitudes:

(5.1) fi(x) = β−1
x + (1 − β−1)pi.
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Figure 8. The Sierpiński Gasket

Then any point x in the invariant set has a representation in the form

x = (β − 1)

∞∑

n=1

β−n
an,

where an is one of the vertices pi.
Unlike the one-dimensional case, the invariant set Jβ (which lies in the convex hull of

the set {p0, . . . , pk}) may have a complicated structure.
Let p0, p1, p2 be the vertices of a triangle ∆ in R

2 (equilateral, say—this does not
matter!). Note first that if β ≤ 3/2, then Jβ = ∆. If β ∈ (3/2, 2), then we have both holes
and overlaps.

The most famous case is β = 2 – see Figure 8. Its Hausdorff dimension is known to be
equal to log 3/ log 2.

Assume now β ∈ (3/2, 2). Let first β = 1+
√

5
2

. We get the following nice fractal – see
Figure 9.

Theorem 24 (D. Broomhead, J. Montaldi and N. Sidorov, 2003 [3]). The invariant set
Jβ is totally self-similar, i.e.,

fε0
. . . fεn−1

(Jβ) = fε0
. . . fεn−1

(∆) ∩ Jβ

for any ε0, . . . , εn−1.
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Figure 9. The Golden Gasket

Theorem 25 (D. Broomhead, J. Montaldi and N. Sidorov, 2003 [3]).

dimH(Jβ) = − log τ

log β
= 1.93063 . . . ,

where where τ ≈ 0.39493 is a root of the polynomial 3z3 − 3z + 1, namely,

τ =
2√
3

cos(7π/18).

Theorem 26 (D. Broomhead, J. Montaldi and N. Sidorov, 2003 [3]). If the invariant set
Jβ is totally self-similar for some β ∈ (3/2, 2), then β satisfies

βm = βm−1 + βm−2 + · · · + β + 1

for some m ≥ 2 (multinacci numbers).

Here is a sketch of the proof of the key Theorem 24 (for an arbitrary multinacci β). Let
x, y, z be the distances to the sides of ∆ so that x+y + z = 1. These are called barycentric

coordinates.
Then the fi are linear maps in barycentric coordinates, and one can easily check that
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f0 =




1 1 − λ 1 − λ
0 λ 0
0 0 λ



 ,

f1 =




λ 0 0

1 − λ 1 1 − λ
0 0 λ



 ,

f2 =




λ 0 0
0 λ 0

1 − λ 1 − λ 1



 ,

where λ = β−1. Moreover,



x
y
z


 = lim

N→+∞
fε0

. . . fεN
(0)

=




(β − 1)
∑∞

k=1 akβ
−k

(β − 1)
∑∞

k=1 bkβ
−k

(β − 1)
∑∞

k=1 ckβ
−k


 ,

where ak, bk, ck ∈ {0, 1} and ak + bk + ck = 1. (In fact, ak = χ{εk=0}, χ{εk=1}, χ{εk=2}.) Let
∆0 = ∆, and

∆n =
2⋃

i=0

fi(∆n−1), n ≥ 1.

The central hole H0 := ∆ \ ∆1. Then each hole is a subset of an image of H0.
The key to the proof is the fact that for the multinacci β any image of the central hole

is a hole. This is easily equivalent to the total self-similarity of Jβ.
It suffices to show that Hn := fε0

. . . fεn−1
(H0) has an empty intersection with ∆n+1.

This is equivalent to the fact that the system

β−n−1 +

n−1∑

1

akβ
−k >

n∑

1

a′
kβ

−k,

β−n−1 +
n−1∑

1

bkβ
−k >

n∑

1

b′kβ
−k,

β−n−1 +
n−1∑

1

ckβ
−k >

n∑

1

c′kβ
−k

does not have a solution. This in turn follows from

Theorem 27 (P. Erdős, I. Joó, M. Joó, 1992 [8]). Let ℓ(β) be given by (3.1). Then
ℓ(β) = β−1 if β is a multinacci number.
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Figure 10. The set of uniqueness superimposed on the golden gasket

In other words, β−1 is the exact separation constant in the Garsia separation lemma
(Theorem 12) if β is multinacci. See Figure 10 for the set of uniqueness for the golden
gasket.

The main problem remaining is to determine for which β the attractor Jβ has positive
two-dimensional Lebesgue measure and for which zero Lebesgue measure.

Theorem 28. [3] For β sufficiently close to 3/2 the measure is positive and, moreover,
the interior of Jβ is nonempty. For β >

√
3 the measure of Jβ is zero.

The numerics suggests the following

Conjecture. (1) For each β ∈
(

3
2
, 1+

√
5

2

)
the attractor Jβ has a nonempty interior – see

Figure 11.

(2) For each β ∈
(

1+
√

5
2

,
√

3
)

it has an empty interior – see Figure 12.

Return to the general setting (5.1). There exists an analogue of Theorem 1:

Theorem 29 (Sidorov, 2007 [20]). For each p0, . . . , pm−1 there exists β0 > 1 such that for
any β > β0,

(1) There are no holes in Jβ.
(2) Each point x in the convex hull of {p0, . . . , pm−1} except when x is pi, has 2ℵ0

distinct addresses.

Thus, β0 in this theorem is a direct analogue of the golden ratio in the one-dimensional
setting. To determine the sharp value of β0 for a given collection {p0, . . . , pm−1} is an
interesting problem.
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Figure 11. The invariant set Jβ for β = 1.54

Figure 12. The invariant set Jβ for β = 1.69

There also exists a multidimensional generalization of Theorem 3:

Theorem 30. [20] Assume that the attractor Jβ has no holes plus some technical condition.
Then Lebesgue-a.e. x in the convex hull of the pi has a continuum of distinct β-expansions,
and the exceptional set has Hausdorff dimension strictly less than d, the dimension of the
convex hull of the pi.
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