Nikita Sidorov (Manchester)

Mini-course: 'Expansions in non-integer bases'

Problem Sheet 2

1. Prove that $L(\sqrt{2}) = 0$. (*Hint: consider an arbitrary sum* $\sum_{k=1}^{n} a_k(\sqrt{2})^k$ and separate the odd and even powers.)

2. Prove that $L(\beta) = 1$ for any β between the golden ratio and 2. (*Hint: consider the subsequence* $y_n = \beta^2 + \beta^4 + \cdots + \beta^{2n}$ and try to find its neighbours.)