

Figure 1: The 2-cycle in Problem 3

Nikita Sidorov (Manchester)

Mini-course: 'Expansions in non-integer bases'

Problem Sheet 1

1. Let $\beta=\frac{1+\sqrt{5}}{2}$ and $x=1$. Find all β-expansions of x. (Hint: use the fact that $\beta^{-1}+\beta^{-2}=1$.) ${ }^{2}$
2. Assume $1<\beta<\frac{1+\sqrt{5}}{2}$ and $0<x<\frac{1}{\beta-1}$. Prove accurately that x has a continuum of distinct β-expansions.
3. Let $\frac{1+\sqrt{5}}{2}<\beta<2$ and Find $x<\frac{1}{\beta}$ such that $T_{\beta}(x)>\frac{1}{\beta(\beta-1)}$ and $T_{\beta}^{2}(x)=x$. (Hence x has a unique β-expansion.)
4. Show that if some x has exactly $m \beta$-expansions $(m \geq 3)$, then there exists x^{\prime} which has exactly two β-expansions.
5. Let $\tau_{\beta}:[0,1) \rightarrow[0,1)$ be defined as $\tau_{\beta}(x)=\beta x \bmod 1$. (The β-transformation.) Suppose $\beta=\frac{1+\sqrt{5}}{2}$; prove that the absolutely continuous measure with the density

$$
h(x)= \begin{cases}\frac{5+3 \sqrt{5}}{2}, & 0 \leq x<\frac{\sqrt{5}-1}{2} \\ \frac{5+\sqrt{5}}{2}, & \frac{\sqrt{5}-1}{2}<x<1\end{cases}
$$

is τ_{β}-invariant. (Rényi, 1957)

