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NATASCHA NEUMÄRKER, JOHN A. G. ROBERTS, AND FRANCO VIVALDI

Abstract. We study numerically the periodic orbits of the Casati-Prosen map, a two-
parameter reversible map of the torus, with zero entropy. For rational parameter values,
this map preserves rational lattices, and each lattice decomposes into periodic orbits. We
consider the distribution function of the periods over prime lattices, and its dependence on
the parameters of the map. Based on extensive numerical evidence, we conjecture that,
asymptotically, almost all orbits are symmetric, and that for a set of rational parameters
having full density, the distribution function approaches the gamma-distribution R(x) =
1 − e

−x(1 + x). These properties, which have been proved to hold for random reversible
maps, were previously thought to require a stronger form of deterministic randomness, such
as that displayed by rational automorphisms over finite fields. Furthermore, we show that
the gamma-distribution is the limit of a sequence of singular distributions which are observed
on certain lines in parameter space. Our experiments reveal that the convergence rate to R is
highly non-uniform in parameter space, being slowest in sharply-defined regions reminiscent
of resonant zones in Hamiltonian perturbation theory.

1. Introduction

This paper is concerned with the distributional properties of the periodic orbits of a zero-
entropy reversible map —the Casati-Prosen triangle map [3, 8]— and the extent to which such
properties are the same as those of random reversible maps. This work is part of ongoing
research on reversibility in a discrete setting [16, 17, 12]

A map L is said to be reversible if it is the composition of two involutions G and H = L◦G.
The involution G conjugates the map to its inverse, namely

(1) G ◦ L ◦ G = L−1 G2 = Id.

Any G that satisfies (1) is called a reversing symmetry for L. (For background information
on reversibility, see [10, 11, 14], and references therein.)

We consider reversible twist maps of the so-called generalised standard form

(2) L : x′ = x + y′, y′ = y + f(x),

We regard L as a map of R
2 or C

2, or indeed of F
2, where F is any field. If f is periodic,

then L commutes with a discrete group of translations, and may be reduced to map of the
cylinder or the torus. The map L is reversible for any choice of the function f , since we can
write L = H ◦ G, where

(3) G : x′ = x, y′ = −y − f(x) H : x′ = x − y, y′ = −y.

One verifies that G and H are orientation-reversing involutions. The family (2) includes
well-known maps such as the Chirikov-Taylor standard map of the cylinder or torus, for
which f(x) = α sin(x), and the area-preserving Hénon map of the plane, corresponding to

1
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f(x) = x2 + α. In this paper we specialize the map L to the Casati-Prosen (C-P) triangle
map T of the two-dimensional torus T

2, for which the function f is given by [8]:

f(x) = α θ(x) + β θ(x) =

{

1 x ∈ [0, 1
2)

−1 x ∈ [12 , 1).

Both variables x and y are periodic with period 1, and the parameters α, β are real numbers.
The C-P map has zero entropy, being piecewise parabolic, and it is conjectured to be uniquely
ergodic and mixing for almost all choices of parameters. However, these properties appear to
be very difficult to establish rigorously [8]. There is a growing interest in the ergodic-theoretic
properties of two-dimensional maps with zero entropy, stimulated by recent developments in
the one-dimensional case [1].

In this paper we focus our attention on the rational periodic orbits of the C-P map. This
map has no periodic orbits at all if β 6∈ Z + αZ [8, lemma 1], and this condition requires that
at least one of α, β is irrational. If, on the other hand, both parameters are rational, then
all rational points on the torus are periodic. To see this, we consider the orthogonal rational
lattice ΛN on the torus, with N2 points

(4) ΛN =
{(

k
N , ℓ

N

)

| 0 ≤ k, ℓ < N
}

N ∈ N.

Then we let

(5) γ = β + α δ = β − α.

From an algebraic viewpoint, the parameters γ, δ are more natural than α and β; the latter,
however, are more significant dynamically. We will use both, as appropriate.

The map T preserves ΛN if and only if (γ, δ) ∈ ΛN ; if α and β are rational, then, without loss
of generality, we may assume that this is the case. All orbits of T over ΛN are periodic, being
the orbits of an invertible map over a finite set. We can therefore consider the distributional
properties of their periods, which we characterise by means of the period distribution function

(6) DN (x) =
#{z ∈ ΛN : t(z) 6 κx}

N2

where t(z) is the minimal period of the point z, and the constant κ is a normalisation param-
eter to be determined below. The function DN , which depends of α and β, is a step function,
with the number of steps being equal to the number of distinct periods of T over ΛN at the
chosen parameter values.

Given that every invertible map of a finite space is reversible, albeit in a trivial sense
[16], developing a meaningful characterisation of reversibility for discrete systems requires the
study of asymptotic phenomena. In a series of papers [15, 16, 17, 12], we have investigated
the limiting (large N) properties of period distribution functions for various algebraic maps
of finite phase spaces, including the area-preserving Hénon map. If these maps have a single
family of reversing symmetries1, and act on the space Λp = F2

p, where Fp is the finite field
with p elements (p a prime), then we conjectured that

(7) lim
p→∞

Dp(x) = R(x) = 1 − e−x(1 + x) x > 0

where the normalisation constant κ is the mean period t̄ of the orbits, that is,

(8) κ = t̄ =
N2

#cycles
.

1This means that there exists G satisfing equation (1), and that L commutes only with its own iterates.
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(In this paper, the terms ‘cycle’ and ‘periodic orbit’ are used interchangeably.) The function R
is the distribution function of the gamma-density with shape and scaling parameters equal to
2 and to 1, respectively [9]. This distribution was shown to be the limiting period distribution
of the composition of two random involutions, with some (mild) conditions on the cardinalities
of the respective fixed sets [17, theorem A]. The normalisation (8) appears naturally in this
context, because the number of cycles is closely connected to the cardinality of the fixed sets
of the involutions. Indeed, in the typical case in which both fixed sets have N points, there
are exactly N symmetric cycles, and ∼ N cycles.

The above findings suggest that convergence to the gamma-distribution (7) provides a
meaningful characterisation of reversibility over a finite space. We note, however, that the
limit (7) has not been established rigorously for any deterministic map. (Note that in the
absence of reversibility, the period distribution differs drastically. Upon scaling by κ = N2,
the function DN for a random invertible map converges to the identity function on the unit
interval.)

In the case of the family (2), a natural question is to identify minimal requirements on f
which suffice to observe the asymptotics (7). We have noted that, over a finite field, the choice
f(x) = x2+c (the Hénon map) is believed to give the gamma-distribution. By contrast, we will
show below —see section 3— that the function f(x) = β generates a step-like distribution,
meaning that, asymptotically, the (normalised) periods of the orbits assume a discrete set
of values. Singular distributions appear also for linear functions f(x) = cx, c ∈ N, which
correspond to hyperbolic toral automorphisms [13]. In this case the lattice dynamics is given
by the action of finite abelian groups, which accounts for the quantisation of periods. The
C-P map, for which f is piecewise constant, may be considered as a minimal departure from
the cases mentioned above, and this justifies our interest in this model. A study of a special
case of the C-P map over rational lattices ΛN was carried out in [18]. At the chosen parameter
values (β = 0, α = 1/N), this map is a discrete version of a near-integrable twist map; it has
a very rich dynamics, and its period distributions are quite different from (7). Thus, even
within the context of rational parameters, we have to exclude ‘exceptional’ parameter values.
This is one of the themes of this work.

Our main concern is the convergence properties of the distributions DN for the C-P map
in the case in which N = p is a prime number. The prime lattices Λp have no non-trivial
invariant sub-lattices, which avoids the appearance of spurious symmetries, and improves
convergence. Furthermore, in the presence of singular distributions, the restriction to prime
lattices invariably leads to neater results, because the location of the singularities of these
distributions appears to depend on the proper divisors of the denominator.

A considerable amount of information is gathered by examining the norm of the difference
Dp −R, as a function of the parameters of the map, for a large prime p (figure 1).

Our findings are summarised informally as follows.

As p → ∞, we observe the following:

(1) For almost all parameters values, the norm of the difference Dp − R converges to
zero.

(2) For k = 1, 2, . . ., if β = kα, then the period distribution converges to a singular
distribution R(k) (see below), with the property that limk→∞R(k) = R.

(3) Almost all rational periodic points are symmetric (i.e., G-invariant).
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Figure 1: Parameter space of the C-P map for N = p = 2339, a prime number, each pixel representing
a parameter pair (α, β). The value of the norm of the difference Dp(α, β)−R (equation (15)) is coded
on a grey scale, the darker a pixel, the larger the deviation from the gamma-distribution (7). Two
blow-ups of this image are shown in figure 4; for parameters (α, β) near (0, 0) (left frame, for the larger
prime p = 9011), and near (1/4, 1/4) (right frame, for the prime p = 11433).

For even k, the distribution R(k) is given explicitly as

R(k)(x) =

n(x)
∑

j=1

j(k − 1)j−1

kj+1
n(x) = ⌈kx⌉ − 1, k = 2, 4, 6, . . . .

We have only incomplete knowledge of R(k) for odd k —see section 3.2.
These statements will be formulated precisely in section 3 as conjectures 1–3, and our

goal is to provide supporting evidence. While gathering evidence, we shall discover that
the rate of convergence of averages is highly non-uniform in parameter space. The regions
with the slowest convergence have a remarkable structure, reminiscent of resonant zones in
Hamiltonian perturbation theory. This phenomenon is visible in figure 1.

The computations described in this paper are substantial. They involve the numerical
exploration of the asymptotic (large p) properties of a family of maps over a two-dimensional
lattice with p2 points. In addition, there are p2 possible choices of parameter pairs, and
therefore the computational time grows proportionally to p4. The slow convergence of averages
complicates matters further. Essential savings in storage were achieved by exploiting the
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dominance of symmetric orbits mentioned above, while computational time was cut by a half
by using an additional symmetry in parameter space (see figure 1 and section 2).

The plan of the paper is as follows. In section 2 we establish the reversibility properties of
the C-P map, together with the symmetry in parameter space mentioned above (lemma 1). In
section 3 we formulate our conjectures precisely, and prepare the analytical set-up necessary
for the experiments. In particular, we establish the presence of singular distribution on some
rational lines (proposition 2). In section 4 we describe our numerical experiments, centred

on the analysis of the norm of the differences Dp − R and R
(k)
p − R(k) between empirical

(subscript p) and conjectured distribution functions. We also keep track of the fraction of the
space occupied by symmetric orbits. Finally, in section 5 we offer concluding remarks.

2. Reversibility and symmetry of the Casati-Prosen map

The family of maps (2) can be written as the composition of two shears, one in y followed
by one in x, that is, L = Sx ◦ Sy, where

Sy : x′ = x, y′ = y + f(x)
Sx : x′ = x + y, y′ = y.

We have pointed out that these maps are reversible for any choice of f , with the involutions
G and H given by (3). Because these involutions are orientation-reversing (their Jacobian
determinant is equal to −1), their fixed sets Fix(G) and Fix(H) —the so-called symmetry

lines— are one-dimensional [5]. The symmetry lines of the involutions (3) are given by

(9) Fix(G) = {(x, y) : 2y = −f(x)} Fix(H) = {(x, 0)},

where f is arbitrary.
Consider now the symmetric periodic orbits, namely those orbits of L invariant under G

(and hence also invariant under H = L ◦ G). These orbits are determined uniquely by their
intersections with the symmetry lines [4]. More precisely, a symmetric periodic orbit with
odd period 2k − 1 has one point (x, y) on the symmetry line Fix(G) and one point Lk(x, y)
on Fix(H). One of even period 2k has two points (x, y) and Lk(x, y) both on Fix(G) or
both on Fix(H). The ability to find symmetric periodic orbits by searching along the one-
dimensional symmetry lines gives a considerable advantage compared to finding asymmetric
periodic orbits, which requires a two-dimensional search.

Specialising equations (2) and (9) to the C-P map T (4), we have:

(10)
G : x′ = x, y′ = −y − α θ(x) − β Fix(G) : {(x, y) : 2y = −αθ(x) − β}
H : x′ = x − y, y′ = −y F ix(H) : {(x, 0)}.

For rational parameters α and β, we consider the action of T over the lattice ΛN , given
in (4), where N is the least common denominator of α and β. Clearing denominators in (4),
we obtain the integer lattice of the numerators, which we still denote by ΛN . The action
of T (mod 1) on this invariant integer lattice can now be described by the permutation TN ,
given by

(11) TN : x′ ≡ x + y′ (mod N) y′ ≡ y + αθN (x) + β (mod N)

where we now abuse notation by identifying x, y, α and β with their respective numerators
over the common denominator N , so in (11)

x, y, α, β ∈ {0, 1, 2, . . . N − 1},
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and

θN (x) =

{

1 x ∈ {0, 1, . . . , ⌈N/2⌉ − 1}

−1 x ∈ {⌈N/2⌉, . . . , N − 1}.

The permutation TN inherits the corresponding reversibility (10) with now:

(12)
Fix(H) = {(x, 0) : x = 0, . . . , N − 1}
Fix(G) = {(x, y) : 2y ≡ −αθN (x) − β (mod N)}

Now Fix(H) and Fix(G) are finite sets, with Fix(H) being a line with N lattice points.
When N is odd, the integer 2 has a modular inverse, and Fix(G) is the union of two ‘half-
lines’ on the lattice, the ⌈N/2⌉ lattice points with height y ≡ −(α+β)/2 (mod N) on the left,
and the ⌊N/2⌋ lattice points with height y ≡ (α − β)/2 (mod N) on the right. In this case,

(#FixG + #FixH)/2 = N

and by [16, Lemma 1], there are precisely N symmetric cycles. When N is even, Fix(G) is
empty if α + β (mod N) is odd, and there are exactly N/2 symmetric cycles. When N and
α + β (mod N) are both even, then

Fix(G) = {(x,−(α θN (x) + β)/2 (mod N/2))} ∪ {(x,−(α θN (x) + β)/2 (mod N/2) + N/2)},

that is, four ‘half-lines’ on the lattice, so again there are N symmetric cycles.
In the next section, we study the dynamics of TN over the entire parameter space {(α, β) :

α, β ∈ {0, 1, 2, . . . N − 1}}. Using Tα,β
N to highlight the explicit dependence of TN on its

parameters, we have

Lemma 1. For odd N , the maps Tα,β
N and T−α,−β

N are conjugate permutations of the N2

points of ΛN , hence have the same cycle structure. For even N , the same is true for Tα,β
N ,

T−α,−β
N and T−α,β

N —they are all conjugate on ΛN— and Tα,β
N = T

α+N/2,β+N/2
N .

Proof. Consider the invertible change of coordinates Φ : x = aX +b, y = aY . With a = ±1,
Φ also defines an invertible map of the torus. The transformed version of T is then:

(13) Φ−1 ◦ T ◦ Φ : X ′ = X + Y ′, Y ′ = Y +
1

a
[αθ(aX + b) + β].

For the choice a = −1, b = ⌊N/2⌋, we have

(14) Θ(X) :=
1

a
[θ(aX + b)] = −θ(X)

because of the invariance θ(x) ≡ θ(−x + ⌊N/2⌋) (mod N) for odd or even N . Consequently,
with these choices of a and b,

Φ−1 ◦ Tα,β
N ◦ Φ = T−α,−β

N ,

showing that a change of sign in parameters makes Tα,β
N and T−α,−β

N conjugate permutations
for any N . For N even, additionally one has θ(x) ≡ −θ(x + N/2) (mod N), corresponding to

taking the choice a = 1, b = N/2 in (14), so Tα,β
N and T−α,β

N are also conjugate permutations.
The last statement of the lemma for N even is obvious.

From this lemma it follows that, for N even, one need only consider parameters lying
in the triangle with vertices (0, 0), (N/2, 0), and (N/2, N/2). If N is odd, then θ(x) and
−θ(x + ⌈N/2⌉) (mod N) agree on all sites except x = ⌈N/2⌉ − 1 when the former gives +1
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and the latter gives −1. Thus for large odd N , there is an approximate symmetry between

the maps T−α,β
N and Tα,β

N —see figure 1.

3. Characterising convergence

In this section we formulate precisely the conjectures mentioned in the introduction, and
develop the analysis that will support the computations described in the next section.

3.1. Convergence to the gamma-distribution. We consider the convergence properties
of the empirical distributions Dp given in (6), for the C-P map on the prime lattice Λp

(see equation (4)). The parameters have the same prime denominator, (α, β) ∈ Λp, and to
make the parameter dependence explicit, we use the notation Dp,α,β. We want to determine
whether or not convergence of Dp to the gamma-distribution (7) will occur for a typical choice
of parameters.

To make this idea precise, we first introduce the quantity

(15) Ep(α, β) =

∫ ∞

0
|Dp,α,β(x) −R(x)| dx

which measures the distance of the distribution Dp,α,β (with scaling constant (8)) from R in
the L1-norm.

Now fix a real constant c > 0, and consider the function

(16) Ep(c) =
#{(α, β) ∈ Λp : Ep(α, β) < c}

p2
.

This is the proportion of rational parameter pairs with common denominator p, for which the
period distribution function lies at distance smaller than c from R. For fixed p, the function
Ep(c) is a distribution function: it is non-decreasing, and it is equal to 1 for all sufficiently
large c. Then we define

(17) E(c) = lim inf
p→∞

Ep(c) c > 0.

The function E is non-decreasing. Numerical evidence suggests that E has a much stronger
property:

Conjecture 1. The function E is identically equal to 1.

This conjecture states that the period distribution of the rational cycles of the C-P map,
is, for almost all rational parameters with prime denominator, the same as that of a random
reversible map [17]. The convergence of Ep to 1 is necessarily non-uniform, because for any
finite p, the value of Ep(c) must be zero in a small neighbourhood of the origin. We shall see
that, in addition, the convergence is very slow.

By construction, the function E is not affected by contributions from possible ‘anomalous’
distributions, which may appear for sets of parameters of size o(p2). A class of anomalous
distribution is found over lines in parameter space with (low-order) rational slope; we deal
with them in the next section. A second class of anomalous distributions appears in certain
two-dimensional regions in parameter space, located in the vicinity of low-order rationals.
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3.2. Singular distributions on rational lines. An infinite sequence of anomalous distri-
butions originates from parameters of the form β = kα, for k = 1, 2, . . .. These are singular
distributions, whose asymptotic properties appear to depend only on k. Moreover, it turns
out that, in the limit of large k, these distributions converge to the gamma-distribution (see
below). Thus, within a single family of maps, one can observe the transition from a singular
orbit statistics to the smooth orbit statistics of random reversible maps.

We begin with a simple case, which can be treated exactly. We define the step-functions

D1(x) =

{

0 if x < 1
1 if x > 1

(18)

D(m)
p (x) =







0 if 0 6 x < 1
pm

1
pi if 1

pi 6 x < 1
pi−1 , i = 1, 2, . . . ,m

1 if x > 1.

(19)

The following results establishes the limiting behaviour of the empirical distribution function
DN,α,β for some special choice of parameters. In order to achieve simple limiting distributions,
we shall adopt a normalisation distinct from (8).

Proposition 2. Let N = pn be a prime power, let (α, β) ∈ Λpn , with α = 0, and let x > 0.
Build the distribution (6) with κ = N = pn.

For β = 0 the following holds:

lim
p→∞

Dpn,0,0(x) = D1(x)(20)

lim
n→∞

Dpn,0,0(x) = D(∞)
p (x).(21)

For β > 0, and p odd, we have

lim
pn→∞

Dpn,0,β(x) = D1(x) gcd(β, p) = 1

lim
p→∞

Dpn,0,β(x) = D1(x) gcd(β, p) 6= 1(22)

lim
n→∞

Dpn,0,β(x) = D(m)
p (x) β = pm m = 1, . . . , n − 1.

(The case p = 2 is omitted for the sake of brevity.)

Proof. When α = 0, the C-P map is

(23) x′ ≡ x + y′ (mod N) y′ ≡ y + β (mod N).

and the t-th iterate of an initial point (x0, y0) is given by

(24) xt ≡ x0 + y0t +
β

2
t(t + 1) (mod N) yt ≡ y0 + βt (mod N).

Consider firstly β = 0. Then the map (23) is an integrable twist map modulo N . Indeed
every line y = y0 is invariant, and on each line the x-dynamics is a translation, namely the
y0-fold composition of the generating translation x′ = x+1. These translations represent the
full ensemble of N possible translations modulo N .

From equation (23), the period of the point (x0, y0) is given by the smallest positive solution
t to the congruence y0 t ≡ 0 (mod N). Simplification yields

(25) t
y0

d
≡ 0 (mod

N

d
) d = gcd(y0, N),
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giving the period t = N/d, independent of x0, and there are d orbits with that period.
For every divisor d of N , the number of lines y = y0 such that gcd(y0, N) = d is equal to

φ(N/d) where φ is Euler’s totient function. In particular, the choice d = N (y0 = 0) gives a
single line with N fixed points for the map. If N = p is prime, the only other possibility is
d = 1, corresponding to p − 1 lines each containing one orbit of maximal period t = N . For
general N , the N2 points of ΛN are accounted for courtesy of the divisor sum [7, Theorem
63]

∑

d|N

d
N

d
φ

(

N

d

)

= N
∑

d|N

φ

(

N

d

)

= N
∑

d|N

φ(d) = N2.

For every divisor t of N , the number of points of period t is Nφ(t), and hence the fraction
µ(t) of phase space occupied by points of period at most t is equal to

(26) µ(t) =
1

N

∑

t′|N

t′≤t

φ(t′).

Specializing to N = pn, we have the periods ti = pi (i = 0, . . . , n), and the sum (26)
becomes

µ(pi) =
1

pn

i
∑

j=0

φ(pj) = pi−n.

We consider the limit of large N with n fixed and p → ∞. The natural period normalization
is N , consistent with the map (23) with β = 0 being an ensemble of N translations. Taking
κ = N gives the distribution (20).

Next we take p fixed and n → ∞. Normalizing periods by N , the proportion of phase
space consumed in cycles with normalized period less than or equal to pi/pn is pi/pn for
i = 0, 1, . . . , n, leading to (21).

Consider now the case of (23) when β > 0. From the second equation in (24), a necessary
condition for an orbit to be periodic is β t ≡ 0 (mod N), independent of y0. By analogy
with equation (25) above, we find that the smallest positive solution is t = τ = N/r where
r = gcd(β,N). From (24), we obtain the time-τ map

(27) xτ ≡ x0 + y0τ +
β

2
τ(τ + 1) (mod N) yτ ≡ y0 (mod N).

The y-component is constant, while the x-component is a translation by U , where

U = U(y0) ≡ y0τ +
β

2
τ(τ + 1) (mod N).

It follows that all orbits of (24) have period equal to a multiple of τ , the multiple being the
additive order of U modulo N , which is N/s where s = s(y0) = gcd(U,N). We see that when
β > 0, the N horizontal lines are partitioned into r invariant sets, each consisting of τ lines,
for a total of τN points. These points are consumed in s cycles of period τN/s.

Several cases arise:

(i) If β is coprime to N and N is odd, then r = 1, τ = N and U ≡ 0 (mod N), independent
of x0 and y0. The xτ -translation is the identity, s = N , and the C-P map (23) has N orbits
of period N .
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(ii) If β is coprime to N and N is even, then r = 1, τ = N and U ≡ βN/2 (mod N), inde-
pendent of x0 and y0. We have s = N/2, and the C-P map has N/2 orbits of period 2N .
(iii) If gcd(β,N) = r > 1 and τ = N/r is odd, then U ≡ y0τ (mod N). Then s =
gcd(y0τ, rτ) = τ gcd(y0, r), contributing a period N/ gcd(y0, r) = τr/ gcd(y0, r) for the C-
P map.
(iv) If gcd(β,N) = r > 1 and τ = N/r is even, then U ≡ y0τ + βτ/2 (mod N). Then
s = gcd(y0τ +βτ/2, rτ) = (τ/2) gcd(2y0+β, 2r), contributing a period 2N/ gcd(2y0+β, 2r) =
2τr/ gcd(2y0 + β, 2r) for the C-P map.

We specialize to N = pn with p odd. If β and N are coprime (that is, β 6= pm, m = 1, . . . , n−
1), then case (i) above applies, yielding the distribution D1(x) in the limit N → ∞ with p fixed
or n fixed. Otherwise, if β = pm, then case (iii) applies with r = β. Normalizing periods by N ,
the allowable normalised periods take the form 1/ gcd(y0, p

m) = p−l, l = 0, . . . ,m, consuming
proportions of phase space equal to p−mφ(pm/ gcd(y0, p

m)) = (1 − p−1)p−l, for l < m, and
to p−m for l = m. This reverts to the problem considered above, and the corresponding
distribution functions in the remaining two limits in (22).

Remark 1. The above proposition raises the question as to the choice of an appropriate nor-
malisation parameter for the distribution function (6). In the case of the gamma-distribution
(7), one verifies that the expectation value 〈x〉 of the normalised period with respect to the
associated gamma-density xe−x is equal to 1. This implies that the expected period 〈t〉 is
equal to the mean period t̄ given in (8).

This is no longer the case for the singular distributions of proposition 2, as we now show.
When α = β = 0, the number of periodic orbits of minimal period t (or t-cycles) of the C-P
map over ΛN is equal to

(28) #t-cycles =
N

t
φ(t) =

{

N if t = 1

N
∏

p|t

(

1 − p−1
)

if t > 1

where the product is taken over all prime divisors p of t. Hence the mean cycle length t̄, given
in equation (8), is

(29) t̄ =
N2

#cycles
=

N

1 +
∑

t|N
t>1

∏

p|t

(

1 − p−1
)

.

As noted above, the number of points of period t over ΛN is equal to Nφ(t) if t divides N ,
and zero otherwise. It follows that the expectation value 〈t〉 for the period, with respect to
the uniform measure on ΛN , is given by

(30) 〈t〉 =
∑

t|N

t
φ(t)

N
.

Specialising the above quantities to the parameters N = pn, we find

t̄ =
pn

1 +
∑n

j=1 (1 − p−1)
=

pn+1

p(n + 1) − n

〈t〉 =
n

∑

i=0

pi φ(pi)

pn
=

1

pn
+

p − 1

pn+1

n
∑

i=1

p2i =
1

pn
+

1

pn−1

p2n − 1

p + 1
.
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In the limit of large N with n fixed and p → ∞, we have

t̄ ∼
N

n + 1
〈t〉 ∼ N.

In this case the scaling parameter κ = N = 〈t〉 gives the simple limiting distribution D1,
whereas the choice κ = t̄ would lead to a shifted singularity.

If instead we take p fixed and n → ∞, we find

t̄ ∼
N

logp(N)

p

p − 1
〈t〉 ∼ N

p

p + 1
.

Here the presence of the logarithmic term in t̄ would shift the singularities of D
(m)
p to infinity.

Remark 2. When α = 0 in the C-P map, many additional reversing symmetries are present
because the C-P map has many non-trivial commuting maps. When α = β = 0, the x
translation on any line, x′ = x + y0, commutes with any other translation on that line and
has the involution x′ = −x as a reversing symmetry. Consequently, the C-P map on ΛN with
α = β = 0 commutes with any map Su : x′ ≡ x + u(y) (mod N), y′ ≡ y (mod N), where u
is any integer-valued function, and has the reversing symmetry R : x′ ≡ −x (mod N), y′ ≡
y (mod N). The latter is a different reversing symmetry to G of (10). Taken together,
commuting maps and reversing symmetries for a given map form a group, the so-called
reversing symmetry group [2]. For instance, the composition of two reversing symmetries
commutes with the map, so we see that R ◦ G : x′ = −x, y′ = −y also commutes with C-P
with α = β = 0. When α = 0 but β 6= 0, the proof above shows that the τ -th iterate of
the C-P map again reduces to x-translations on each horizontal line, and then inherits the
aforementioned commuting maps and reversing symmetries (in this case, we say that the C-P
map has (reversing) τ -symmetries [2]). The appearance of the gamma-distribution (7) has
been confined to maps that have no nontrivial commuting maps (other than their powers)
and a single generating reversing symmetry.

Remark 3. The case α = β = 0 of the C-P map is equivalent to the action of the parabolic

integer matrix ( 1 1
0 1 ) on ΛN . The action of hyperbolic integer matrices on ΛN , and their related

singular period distributions, is a well-studied topic [13].

We return to the C-P map for general α, β. To deal with anomalous distributions on lines,
we consider the following sequence of functions

(31) R(k)(x) =

n(x)
∑

j=1

j(k − 1)j−1

kj+1
n(x) = ⌈kx⌉ − 1, k = 2, 4, 6, . . . .

For x 6 1/k the sum is empty, and R(k) is defined to be zero. These are step-functions, with
steps at the integer multiples of k−1. The index k is restricted to even values because for odd
k these functions are not relevant to the periodic orbits of the C-P map. The functional form
of these singular distributions was determined by trial and error, by matching the result of
accurate numerical experiments (see section 4). At the end of this section, we offer a heuristic
argument to justify the location of the singularities of these distributions.

Next we show that the functions R(k) are distribution functions that converge to the
gamma-distribution as k → ∞. For each k, the function R(k) is non-negative and non-
decreasing; to show that R(k) is a distribution function we must verify that limx→∞R(k)(x) =
1.
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Lemma 3. The following holds

lim
x→∞

R(k)(x) = 1 lim
k→∞

R(k)(x) = R(x), x > 0.

Proof. Using the derivative of the geometric series to evaluate the sum, one obtains

n
∑

j=1

j(k − 1)j−1

kj+1
=

1

k2
·
n

(

k−1
k

)n+1
− (n + 1)

(

k−1
k

)n
+ 1

(k−1
k − 1)2

= 1 −

(

1 −
1

k

)n+1 (

k

k − 1
+

n

k − 1

)

.

Using (31), and noting that n(x) = kx + O(1), we obtain

lim
x→∞

R(k)(x) = 1 − lim
n→∞

(

1 −
1

k

)n+1 (

k

k − 1
+

n

k − 1

)

= 1

as desired. Likewise, we find

lim
k→∞

R(k)(x) = 1 − lim
k→∞

(

1 −
1

k

)kx (

1 −
1

k

)O(1) (

k

k − 1
+

k

k − 1
x +

O(1)

k − 1

)

= 1 − e−x(1 + x) = R(x).

Let us now return to the C-P map. We construct a sequence of lines in parameter space,
with integer slope, again limiting ourselves to rational numbers with prime denominator
N = p.

Λ(k)
p = {(α, β) ∈ Λp \ {(0, 0)} : β = kα} p prime, k = 1, . . . , p − 1.

The discrete lines Λ(k) are disjoint, and their union is the whole of Λp, apart from the set
αβ = 0 (the union of two lines). For fixed k, we examine the period distributions for parameter

pairs restricted to Λ
(k)
p , and then we let p go to infinity. We shall repeat the procedure used

for unconstrained parameter pairs, with the obvious modifications.
We fix a positive real constant c, and consider the quantity

E(k)
p (c) =

#{(α, β) ∈ Λ
(k)
p : E

(k)
p (α) < c}

p − 1

where the L1-norm

(32) E(k)
p (α) =

∫ ∞

0
|Dp,α,kα(x) −R(k)(x)| dx

measures the distance between the empirical and the theoretical values.
Finally, we define

E(k)(c) = lim inf
p→∞

E(k)
p (c) c > 0.

Numerical evidence suggests the following

Conjecture 2. For every even integer k, the function E(k) is identically equal to 1.
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Thus letting p and k go to infinity (in that order) we recover the gamma-distribution.
There is a sequence of distributions analogous to (31) for odd k. However, we have been

able to identify precisely only the first few terms of this sequence. A restricted version of
conjecture 2 for odd k will be given in section 4.

The appearance of singular distributions along the lines β = kα can be justified heuristi-
cally, assuming ergodicity. From [8, equation (3)], we find, for the t-th iterate of the initial
point (x0, y0)

yt(x0, y0) = y0 + βt + αSt St =
t−1
∑

k=0

θ(xk).

Let β = kα, for some k = 1, . . . , p − 1, and assume that both numerator and denominator of
β are co-prime to p. The above equation becomes a congruence modulo p, and for periodicity
(yt = y0), we require

tk + St = tk

(

1 +
St

tk

)

≡ 0 (mod p)

to be solved for the smallest t > 0. Suppose now that the sequence (xk) is uniformly dis-
tributed in the unit interval. This implies that, as t → ∞, we have St = o(t), and hence,
asymptotically, kt is an integer multiple of p. After scaling the periods by p, the distribution
function approaches a step function, with steps at (some) integer multiples of k−1.

3.3. Asymmetric orbits. The C-P map shares another property of random reversible maps,
namely the fact that almost all cycles are symmetric. Thus, for rational α and β with common
prime denominator p, we consider the proportion Ap(α, β) of points z on the prime lattice Λp

which belong to asymmetric periodic orbits (this means that G(z) is not in the orbit of z)

(33) Ap(α, β) =
#{z ∈ Λp : z belongs to an asymmetric cycle}

p2
.

As done above, we fix a real constant c > 0 and define

(34) Ap(c) =
#{(α, β) ∈ Λp : Ap(α, β) 6 c}

p2

which is the fraction of parameter pairs for which the proportion of asymmetric orbits does
not exceed c. The function Ap is non-decreasing, and it is equal to 1 for c > 1. After defining

A(c) = lim inf
p→∞

Ap(c) c > 0

we can formulate our third conjecture.

Conjecture 3. The function A is identically equal to 1.

In the rest of the paper, we provide evidence in support of the conjectures stated in this
section.

4. Supporting evidence

A typical computation consists of determining the period of all symmetric periodic orbits of
the map T on a prime lattice Λp, for some large prime number p, and rational parameter pair
(α, β) ∈ Λp. This process involves a one-dimensional search along the symmetry lines Fix(G)
and Fix(H), given by equation (12). All computations entail integer arithmetic modulo p,
as described in section 2.
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It turns out that the symmetric orbits occupy nearly all phase space (conjecture 3), and so
the total number of iterations of the map is typically very close to p2. The required storage
is only 2p —the combined size of the symmetry lines— since there is no need to record the
points in the orbits which lie outside the symmetry lines.

From the period data we compute the distribution function Dp, and its distance Ep(α, β)

from the gamma-distribution R, or the distance E
(k)
p (α) from the singular distribution R(k),

as appropriate —see equations (15) and (32). In addition, we compute the fraction Ap of the
space occupied by asymmetric orbits, and monitor the rate at which this quantity converges
to zero. For large values of p, the actual period data are discarded, to reduce the size of the
output data files.

From lemma 1, to obtain a complete representation of parameter space for given p, it
suffices to consider the restricted range

0 6 α < ⌊p/2⌋ 0 6 β < p − 1.

4.1. Convergence to the gamma-distribution. An overview of the behaviour of the func-
tion Ep(α, β) over the entire parameter space is given in figure 1. These data, and all the data
in the rest of the paper, correspond to the scaling constant κ = t̄ —see equation (8). Each
pixel in the figure represents a pair (α, β), and the value of Ep(α, β) is encoded on a grey
scale. The larger the deviation from the gamma-distribution, the darker the pixel. Thus the
white areas correspond to small values of E , which indicate proximity to R, while the black
pixels represent the largest deviations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

E
p

Figure 2: The function Ep(c) —see equation (16)— for p = 251, 499, 1103, 2339 (right to left). As p
increases, we see non-uniform convergence of Ep(c) to 1, supporting conjecture 1.

Before examining the nature of the large deviations from the gamma-distribution, we con-
sider the typical behaviour of the distribution function, using the construct developed in
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section 3. In figure 2, we show the function Ep(c), for three increasing values of p. Details
of this figure are displayed in figure 3, showing the behaviour near the origin and near the
top. Near the origin, the empirical distribution remains zero (or very small) over a gradually
shrinking interval. At the same time, the graph of Ep raises towards 1, while anomalies are
smoothed out. In addition (not evident from the picture), the smallest value of c for which
Ep(c) = 1 migrates to the right (see below). These data provide convincing evidence for
the convergence of Ep to 1, which is conjecture 1. The overall rate of convergence is slow
—approximately logarithmic in p.
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Figure 3: Details of figure 2. Left: the behaviour of Ep(c) near the origin. Right: behaviour near the
top.

Large deviations from the gamma-distribution originate from two distinct phenomena,
which we describe in the next two sections.

4.2. Anomalous sectors. Experimental data show that there are anomalous distributions
in the vicinity of many low-order (i.e., small denominator) rational parameter pairs, which
we call cluster points. The most prominent cluster points are (0, 0) and (1/2, 1/2) but several
others are visible elsewhere (see figure 1). However, cluster points are missing at some low-
order rational parameters, such as those of the form (0,m/n), with even n.

To each cluster point we associate two rational lines, one with positive slope, and one with
negative slope. These lines divide the neighbourhood of a cluster into four sectors (taking
into account the periodicity of parameter space, if necessary). For instance, the sectors of the
clusters at (0, 0) and (1/2, 1/2) are determined by the lines with slope ±1.

Details of the clusters points at (0, 0) and (1/4, 1/4) are shown in figure 4. The behaviour
of E changes markedly and abruptly from sector to sector. The East and West sectors, which
we call the anomalous sectors, feature deviations from the gamma-distribution which are not
only larger in value, but which also affect a two-dimensional region in parameter space. By
contrast, the large fluctuations within the North and South sectors —the regular sectors—
are confined to one-dimensional rational lines (see below).
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Figure 4: Details of the anomalous sectors of two cluster points. The values of the function Ep(α, β),
are represented on a grey scale, with the largest values in black. Left: the sectors of the cluster point
(α, β) = (0, 0), for p = 9011. Right: the sectors of the cluster point (1/4, 1/4), but now shown for the
larger prime p = 11433.

Thus, near the (0, 0) cluster point, convergence to the gamma-distribution is much faster for
|β| > |α| than for |β| 6 |α|. Within the former domain, the lines α = 0 and 3α = ±β feature
the most prominent fluctuations, while all other rational lines give much smaller deviations.
On the other hand, within the anomalous sector |β| 6 |α|, large deviations are found to occur
for even values of γ = α+β. There are also large fluctuations on rational lines, most notably,
the lines β = 0 and |β| = α/3.

In the anomalous sectors, a mechanism is at work, which delays convergence of averages.
In order to reconcile these findings with the data shown previously, we provide evidence that
these fluctuations do indeed decay to zero, as p → ∞. In figure 5, we compare the value
of Ep in the anomalous and regular sectors near (0, 0), for increasing values of p. To isolate
the dominant features, we perform a double average. First, we average Ep over the lines
γ = const (cf. equation (5)), because we found that the variations of E are much stronger
along the orthogonal coordinate δ. Thus, inside the anomalous sector, we compute

Ēγ =
1

n

n
∑

α=1

Ep(α, γ − α) n(γ) =

⌊

γ − 1

2

⌋

.

(The quantity Ep(γ − α,α) is used for the regular sector.) Then we perform a Cesaro sum
over γ

(35) 〈E〉γ =
1

γ − 2

γ
∑

γ′=3

Ēγ′ .
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Figure 5: Left: Non-uniform convergence to the gamma-distribution for parameters pairs (α, β) within
an anomalous sector of the cluster point (0, 0) (0 < β < α). The five curves in increasing darkness
correspond to the primes p = 499, 997, 1999, 4297, 8599. In each case we plot the Cesaro sum 〈E〉γ ,
given in equation (35), as a function of γ/p for even values of γ (the odd values of γ give much lower
values of Ēγ). Right: the same functions, within the regular sector (0 < α < β).

As p increases, the function 〈E〉γ develops a singular profile within the anomalous sector,
within an overall logarithmic convergence to zero. This behaviour is indeed consistent with
the validity of conjecture 1, but it suggests that the smallest value of c for which Ep(c) = 1,
diverges to infinity, as p → ∞. Equivalently, there exist sequences of rational parameter
values, converging to (0, 0), along which the distance from the gamma-distribution diverges
to infinity. These anomalous distributions are dominated by the presence of few very large
cycles.

4.3. Singular distributions on rational lines. A second source of large fluctuations are
anomalous distributions along lines with rational slope, the most prominent of which are

β = ±α, β = ±3α.

On these lines the distribution function has a step-like behaviour, which accounts for the large
value of E .

There are in fact singular distributions on all parametric lines of the form β = kα. The
corresponding empirical distributions are defined as

(36) R(k)
p,α(x) := Dp,α,kα(x)

where D was defined in (6), and the parameter dependence has been made explicit (see also
equation (32)). Some empirical singular distribution are plotted in figure 6. The conjec-

tured analytical form R(k) of the distributions corresponding to even values of k is given in
equation (31). These functions have been determined by trial and error, examining empirical
distributions for large primes.

Our experiments show that there are analogous distributions on prime lattices also for odd
k. However, apart from the values k = 1, 3, we could only locate the singularities of these
distributions, but not their analytical form. The empirical distributions for k = 1, 3, 5 are
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Figure 6: Empirical period distribution functions R
(k)
p,α on rational lines β = kα, for even k. Left:

for the prime p = 81799 and α = 70, we display the distributions for k = 2 (large steps) and k = 8
(small steps). The smooth curve is the gamma-distribution. Right: blow-up of the fine structure of

the function R
(8)
p,α, in the range 3 6 x 6 7, showing the 32 steps predicted by formula (31). Again, the

smooth curve is the gamma-distribution.

given in figure 7. Of note is the fact that R
(1)
p,α and R

(3)
p,α have finitely many steps; by contrast

R
(5)
p,α appears to have infinitely many steps at the integer multiples of 2/5, although the value

of the heights of the steps is not obvious.

Figure 7: Empirical period distribution functions R
(k)
p,α on rational lines β = kα, for odd k. For the

prime p = 81799 and α = 5, we display the empirical distributions for k = 1 (one step), k = 3 (two
steps), and k = 5 (several steps). The smooth curve is the gamma-distribution.

The result for k = 1, 3 is given by the following
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Conjecture 4. In the limit of large primes p, and independent of α, the empirical period

distribution R
(k)
p,α for the Casati-Prosen map with parameters β = kα, for k = 1 and k = 3

converges, respectively, to the functions

(37) R(1)(x) =

{

0 if x < 2
1 if x > 2

R(3)(x) =







0 if x < 2
3

1
3 if 2

3 6 x < 4
3

1 if 4
3 6 x.

In figure 8 we analyse the emergence of the singularity at x = 2 for the distribution R
(1)
p,α,

for two primes and a sample of values of α. The build-up of the step in the distribution
function is quite regular, and seems to be optimal for α = 1.

Figure 8: Convergence of the empirical distribution R
(1)
p,α to R(1) (β = α), in the proximity of the

step at x = 2. Left: The prime p = 53993 is fixed and shown are the distributions for α = 1, 2, 23936.

The steepest curves correspond to the values α = 1, 2. Right: Shown are the distributions R
(1)
p,α for

fixed α = 1 and the sequence of primes p = 50021, 100043, 200023, 400033, 800077. The convergence
to the step function improves with the prime.

To gain an overview of this phenomenon, we plot the value of the norm E
(k)
p (α) ((32) with

(36)) for two large primes p, for k = 1 and k = 3, over the full range of α values (figure 9). The

convergence of the empirical distributions R
(k)
p,α to their conjectured value (37) is noticeably

faster for k = 3 (and, in both cases, roughly algebraic in p, with exponent close to −1/2).
Convergence is uniform in α, and the data show evidence of scaling in the fluctuations. For
k = 1, the fastest convergence takes place near the endpoints of the line, which are the cluster
points (0, 0) and (1/2, 1/2).

4.4. Asymmetric orbits. In this section we test the validity of conjecture 3. From the
knowledge of the periods of all symmetric orbits, one determines the value of the expression
Ap(α, β) for the desired set of parameters.

Numerical experiments show that, much like for the distance from the gamma-distribution,
the proportion of asymmetric periodic orbits is small on average, but also far from uniform in
parameter space. We first consider the distribution function Ap(c), defined in equation (34).
In figures 10 and 11, we show the empirical function Ap(c), for three increasing values of p.
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Figure 9: In the top figure, we plot the norm E
(1)
p (α) as a function of α/p ∈ [0, 1

2 ] for the primes
p = 7699 and p = 33521, the latter giving the smaller norm. In the bottom figure, we plot the norm

E
(3)
p (α) as a function of α/p for the primes p = 2927 and p = 33521. The convergence for E

(3)
p (α) is

noticeably better than for E
(1)
p (α) .

As for Ep, the convergence to 1 is non uniform, and approximately logarithmic. Note that,
as p increases, the value of Ap(0) decreases, because, due to the improved statistics, a small
number of asymmetric orbits appears for an increasing fraction of parameter values.

Figure 12 is the analogue of figure 1 for asymmetric orbits, The function Ap(α, β) is coded
on a grey scale, The zones with the highest proportion of asymmetric orbits, the darkest
pixels, form anomalous sectors, which develop around cluster points. The structure of the
function Ap is similar to that of Ep, with two important differences. First, the rational lines
are not anomalous. Second, the anomalous sectors include sectors which are not anomalous
for Ep, such as those of the form (0,m/n), with even n.

The neighbourhood of the (0, 0) cluster is shown in figure 13, for the prime p = 8599. The
structure is rather similar to that of figure 4, even though the boundary of the anomalous
sector seems somewhat shifted away from the line α = β. Finally, in figure 14, the analogue
of figure 5, we compare the value of Ap in the anomalous and regular sectors near (0, 0), for
increasing values of p. The averaging procedure to determine 〈A〉γ is the analogue of that
described by equation (35).

5. Concluding remarks

Our study of the C-P map provides further evidence of the ubiquity and universality of the
gamma-distribution (7) for periodic orbits of reversible maps. This asymptotic distribution
had not been previously observed on a zero-entropy map, and it seems to require milder
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Figure 10: Details of the functions Ap(c) —see equation (34)— near the origin, for p =
251, 499, 1103, 2339 (right to left). As p increases, we see non-uniform convergence of Ap(c) to 1,
supporting conjecture 3.
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Figure 11: Details of figure 10. Left: the behaviour of Ap(c) near the origin. Right: behaviour near
the top.

ergodic properties than originally thought. We have also shown that, within the same two-
parameter family of maps, it is possible to observe a transition from singular distributions to
the gamma distribution.
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Figure 12: Parameter dependence of the function Ap(α, β) (equation (34)) for N = p = 2339, a
prime number. The value of Ap is coded on a grey scale, the darker a pixel, the larger the fraction of
asymmetric orbits at the corresponding parameter pair (α, β).

The restriction to prime lattices has been necessary to obtain well-behaved singular dis-
tributions R(k) along rational lines. For composite values of N , we have found examples in
which both the location and the height of the steps differed from those of prime lattices.

Many questions raised by our findings remain unanswered, the main issue being a rigorous
justification of the asymptotic emergence of the gamma-distribution. Another intriguing
problem is the identification of the mechanism responsible for slow convergence to averages in
the anomalous sectors of parameter space. Within these sectors we observe a large variety of
orbit distributions, which differ considerably from the singular distributions seen on rational
lines.

The conjectured form of singular distributions R(k) is attractively simple, yet at present
we have no rigorous explanation of their origin. We note that singular period distributions
often have an arithmetical characterisation. We have pointed out that in the case of toral
automorphisms, the singular behaviour results from the presence of abelian groups, whose
normalised order depend on the prime factorisation of the lattice size N . Singular distributions
also appear for integrable rational maps acting over finite fields [15, 6]. The underlying abelian
groups now are addition over the elliptic curves that foliate the phase space. The Hasse-Weil
bound ensures that, asymptotically, the normalised order of these groups is the same, leading
again to steps in the period distribution function.
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Figure 13: Details of the parameter dependence of the function Ap(α, β), for the prime p = 9011, in
the vicinity of the origin. The darker dots represent the parameter pairs corresponding to a relatively
large proportion of asymmetric orbits. The corresponding picture for Ep(α, β) for this prime was shown
in the left frame of figure 4.

From an ergodic-theoretic viewpoint, all phenomena described in this work refer to excep-
tional values, both in parameter space, and in phase space. However, looking at rationals in
order to understand irrationals is natural, and it is quite possible that our findings are the
manifestation of phenomena that concern generic parameter values as well.

Acknowledgements: This work was inspired by a talk given by Mirko degli Esposti in
Trieste. We are grateful to Martin Horvat for generously sharing with us some preliminary
data on period distribution of the triangle map. The very detailed comments of one referee did
much to improve the accuracy and clarity of this paper. JAGR and FV would like to thank,
respectively, the School of Mathematical Sciences at Queen Mary, University of London, and
the School of Mathematics and Statistics at the University of New South Wales, Sydney, for
their hospitality. This work was supported by the Australian Research Council.

References

[1] A. Avila and G. Forni, Weak mixing for interval exchange transformations and translation flows,
Ann. Math. 165 (2007) 637–664.

[2] M. Baake and J.A.G. Roberts, The structure of reversing symmetry groups, Bull. Austral. Math.
Soc. 73 (2006) 445–459.

[3] G. Casati and T. Prosen, Triangle map: A model for quantum chaos, Phys. Rev. Lett. 85 (2000)
4261–4264.

[4] R. De Vogelaere, On the structure of symmetric periodic solutions of conservative systems, with
applications, in: Contributions to the Theory of Nonlinear Oscillations, Vol. 4, ed. S. Lefschetz,
Princeton University Press, Princeton (1958), pp. 53-84.
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