The Mean-Median Map

Jonathan Hoseana and Franco Vivaldi
Take any finite sequence of real numbers:

\[(11, 18, 23)\].

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
11 + 18 + 23 + x = 18 \Rightarrow x = 20.
\]

So we now have \[(11, 18, 23, 20)\].

Do this recursively:

\[(11, 18, 23, 20, 23, 25, 26, 27, \ldots)\]

The mean-median sequence of \((11, 18, 23)\) stabilises!

Strong terminating conjecture [Schultz & Shiflett, 2005]
The mean-median sequence of any initial real sequence is eventually constant.
Take any finite sequence of real numbers:

(11, 18, 23).

Do this recursively:

(11, 18, 23, 20, 23, 25, 23, 23, 23, ...)

The mean-median sequence of (11, 18, 23) stabilises!

Strong terminating conjecture [Schultz & Shiflett, 2005]

The mean-median sequence of any initial real sequence is eventually constant.
Take any finite sequence of real numbers:

$(11, 18, 23)$.

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

$11 + 18 + 23 + x / 4 = 18$ \[\Rightarrow x = 20\]

So we now have

$(11, 18, 23, 20)$.

Do this recursively:

$(11, 18, 23, 20, 23, 25, \ldots)$

The mean-median sequence of $(11, 18, 23)$ stabilises!

Strong terminating conjecture [Schultz & Shiflett, 2005]

The mean-median sequence of any initial real sequence is eventually constant.
Take any finite sequence of real numbers:

\[(11, 18, 23)\].

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
\frac{11 + 18 + 23 + x}{4} = 18
\]

So we now have \((11, 18, 23, 20)\).

Do this recursively:

\((11, 18, 23, 20, 23, 25, \ldots, 61, 67, \ldots, 23, 23, 23, \ldots)\)

The mean-median sequence of \((11, 18, 23)\) stabilises!

Strong terminating conjecture [Schultz & Shiflett, 2005]
The mean-median sequence of any initial real sequence is eventually constant.
Take any finite sequence of real numbers:

\[(11, 18, 23).\]

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
\frac{11 + 18 + 23 + x}{4} = 18 \quad \Rightarrow \quad x = 20.
\]

The mean-median sequence of \((11, 18, 23)\) stabilises!

Strong terminating conjecture [Schultz & Shiflett, 2005]
The mean-median sequence of any initial real sequence is eventually constant.
Take any finite sequence of real numbers:

\((11, 18, 23)\).

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
\frac{11 + 18 + 23 + x}{4} = 18 \implies x = 20.
\]

So we now have

\((11, 18, 23, 20)\).
Take any finite sequence of real numbers:

(11, 18, 23).

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
\frac{11 + 18 + 23 + x}{4} = 18 \quad \Rightarrow \quad x = 20.
\]

So we now have

(11, 18, 23, 20).

Do this recursively:

(11, 18, 23, 20,
Take any finite sequence of real numbers:

\[(11, 18, 23)\].

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
\frac{11 + 18 + 23 + x}{4} = 18 \quad \Rightarrow \quad x = 20.
\]

So we now have

\[(11, 18, 23, 20)\].

Do this recursively:

\[(11, 18, 23, 20, 23, 25, \frac{61}{2}, \frac{67}{2}, \ldots)\].
Take any finite sequence of real numbers:

\((11, 18, 23)\).

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
\frac{11 + 18 + 23 + x}{4} = 18 \quad \Rightarrow \quad x = 20.
\]

So we now have

\((11, 18, 23, 20)\).

Do this recursively:

\((11, 18, 23, 20, 23, 25, \frac{61}{2}, \frac{67}{2}, 23, 23, 23, \ldots)\)

The mean-median sequence of \((11, 18, 23)\) stabilises!

Strong terminating conjecture [Schultz & Shiflett, 2005] The mean-median sequence of any initial real sequence is eventually constant.
Take any finite sequence of real numbers:

\((11, 18, 23)\).

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
\frac{11 + 18 + 23 + x}{4} = 18 \quad \Rightarrow \quad x = 20.
\]

So we now have

\((11, 18, 23, 20)\).

Do this recursively:

\[(11, 18, 23, 20, 23, 25, \frac{61}{2}, \frac{67}{2}, 23, 23, 23, \ldots)\]

The mean-median sequence of \((11, 18, 23)\) stabilises!
Take any finite sequence of real numbers:

\((11, 18, 23)\).

Adjoin to it a new number in such a way that the mean of the resulting sequence is equal to the median of the original sequence:

\[
\frac{11 + 18 + 23 + x}{4} = 18 \Rightarrow x = 20.
\]

So we now have

\((11, 18, 23, 20)\).

Do this recursively:

\((11, 18, 23, 20, 23, 25, \frac{61}{2}, \frac{67}{2}, 23, 23, 23, \ldots)\)

The mean-median sequence of \((11, 18, 23)\) stabilises!

Strong terminating conjecture [Schultz & Shiflett, 2005]

The mean-median sequence of any initial real sequence is eventually constant.
Several conjectures have been formulated on mean-median sequences: they are all open.
Several conjectures have been formulated on mean-median sequences: they are all open.

The map:

\[x_{n+1} = (n + 1)M_n - S_n \]

n-th median \(n \)-th sum
Several conjectures have been formulated on mean-median sequences: they are all open.

The map: \[x_{n+1} = (n + 1)M_n - S_n \]
▶ A recursion whose order grows with the iteration.

1. Each new term is the difference of two diverging quantities.
2. The median is a non-smooth function of the data.
Several conjectures have been formulated on mean-median sequences: they are all open.

The map:

\[x_{n+1} = (n + 1)M_n - S_n \]

- A recursion whose order grows with the iteration.
- Each new term is the difference of two diverging quantities.
Several conjectures have been formulated on mean-median sequences: they are all open.

The map: \[x_{n+1} = (n + 1)M_n - S_n \]

- A recursion whose \textit{order grows with the iteration}.
- Each new term is the \textit{difference of two diverging quantities}.
- The median is a \textit{non-smooth} function of the data.
Simplest non-trivial initial sequence

\[(a, b, c) \quad a \leq b \leq c\]
Simplest non-trivial initial sequence

\[
(a, b, c) \quad a \leq b \leq c
\]
Simplest non-trivial initial sequence

\[(a, b, c) \quad a \leq b \leq c\]
Simplest non-trivial initial sequence

\[(a, b, c) \quad a \leq b \leq c\]

\[(a, b, c)\] is affine-equivalent to \((0, x, 1)\).

\[O\] \(\longleftrightarrow\) \(O\)

\[a \quad b \quad c\]

\[0 \quad x \quad 1\]
Simplest non-trivial initial sequence

\[(a, b, c) \quad a \leq b \leq c\]

\[(a, b, c)\] is affine-equivalent to \((0, x, 1)\).

The mean-median map preserves affine-equivalence.
Simplest non-trivial initial sequence

\[(a, b, c) \quad a \leq b \leq c\]

\[(a, b, c)\] is affine-equivalent to \((0, x, 1)\).

The mean-median map preserves affine-equivalence.

It suffices to study \((0, x, 1), \ 0 \leq x \leq 1\).
Simplest non-trivial initial sequence

\[(a, b, c) \quad a \leq b \leq c\]

\[(a, b, c)\] is affine-equivalent to \((0, x, 1)\).

The mean-median map preserves affine-equivalence.

It suffices to study \((0, x, 1), \quad 0 \leq x \leq 1\).

[Chamberland & Martelli, 2007]: \(\frac{1}{2} \leq x \leq \frac{2}{3}\) suffices.
A typical orbit \[(0, x, 1)\] \[\frac{1}{2} \leq x \leq \frac{2}{3}\]
A typical orbit

\[(0, x, 1) \quad \frac{1}{2} \leq x \leq \frac{2}{3}\]

\[x = \frac{71}{128}\]
A typical orbit \((0, x, 1)\) \(\frac{1}{2} \leq x \leq \frac{2}{3}\)

\[x = \frac{71}{128} \]

The sequence \(M_n\) of medians is locally monotonic (non-decreasing for \(1/2 \leq x \leq 2/3\)).
A typical orbit $(0, x, 1)$ with $\frac{1}{2} \leq x \leq \frac{2}{3}$

The sequence M_n of medians is locally monotonic (non-decreasing for $1/2 \leq x \leq 2/3$).

If $M_{n+1} = M_n$, then the sequence stabilises.
A typical orbit \((0, x, 1)\) for \(\frac{1}{2} \leq x \leq \frac{2}{3}\).

\[x = \frac{71}{128} \]

The sequence \(M_n\) of medians is locally monotonic (non-decreasing for \(1/2 \leq x \leq 2/3\)).

If \(M_{n+1} = M_n\), then the sequence stabilises.

Convergence without stabilisation has never been observed.
Invariant modules

Let A be the $\mathbb{Z}[\frac{1}{2}]$-module generated by the initial sequence (x_1, \ldots, x_n).

A is invariant under the mean-median map.

For a rational initial sequence, we have $A = \mathbb{1}_d \mathbb{Z}[\frac{1}{2}]$, where d is the largest odd divisor of the lcm of the denominators of the x_i's.

The module A is a layered space $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots k/d \cdots k/2d \cdots k/4d \cdots k/5d \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$.

How deep do orbits sink?
Invariant modules

- $\mathbb{Z}\left[\frac{1}{2}\right]$: the ring of rationals whose denominator is a power of 2.

Let A be the $\mathbb{Z}\left[\frac{1}{2}\right]$-module generated by the initial sequence $(x_1,...,x_n)$.

A is invariant under the mean-median map.

For a rational initial sequence, we have $A = \frac{1}{d}\mathbb{Z}\left[\frac{1}{2}\right]$, where d is the largest odd divisor of the lcm of the denominators of the x_is.

The module A is a layered space

$$
\begin{align*}
&\cdots \\
&\frac{k}{d} \\
&\frac{k}{2d} \\
&\frac{3k}{2d} \\
&\frac{5k}{2d} \\
&\vdots \\
&\frac{d^r k}{2^d r} \\
\end{align*}
$$

How deep do orbits sink?
Invariant modules

- $\mathbb{Z}\left[\frac{1}{2}\right]$: the ring of rationals whose denominator is a power of 2.
- Let \mathcal{A} be the $\mathbb{Z}\left[\frac{1}{2}\right]$-module generated by the initial sequence (x_1, \ldots, x_n).

How deep do orbits sink?
Invariant modules

- \(\mathbb{Z} \left[\frac{1}{2} \right] \): the ring of rationals whose denominator is a power of 2.
- Let \(A \) be the \(\mathbb{Z} \left[\frac{1}{2} \right] \)-module generated by the initial sequence \((x_1, \ldots, x_n) \).
- \(A \) is invariant under the mean-median map.

How deep do orbits sink?
Invariant modules

- $\mathbb{Z}\left[\frac{1}{2}\right]$: the ring of rationals whose denominator is a power of 2.
- Let \mathcal{A} be the $\mathbb{Z}\left[\frac{1}{2}\right]$-module generated by the initial sequence (x_1, \ldots, x_n).
- \mathcal{A} is invariant under the mean-median map.
- For a rational initial sequence, we have $\mathcal{A} = \frac{1}{d}\mathbb{Z}\left[\frac{1}{2}\right]$, where d is the largest odd divisor of the lcm of the denominators of the x_is.
Invariant modules

- $\mathbb{Z}[\frac{1}{2}]$: the ring of rationals whose denominator is a power of 2.

- Let \mathcal{A} be the $\mathbb{Z}[\frac{1}{2}]$-module generated by the initial sequence (x_1, \ldots, x_n).

- \mathcal{A} is invariant under the mean-median map.

- For a rational initial sequence, we have $\mathcal{A} = \frac{1}{d} \mathbb{Z}[\frac{1}{2}]$, where d is the largest odd divisor of the lcm of the denominators of the x_is.

- The module \mathcal{A} is a layered space

\[
\begin{align*}
\cdots & \quad \cdots k/d \\
\cdots & \quad \cdots k/2d \\
\cdots & \quad \cdots k/2^2d \\
\cdots & \quad \cdots k/2^3d \\
\cdots & \quad \cdots k/2^4d \\
\cdots & \quad \cdots k/2^5d
\end{align*}
\]
Invariant modules

- $\mathbb{Z}\left[\frac{1}{2}\right]$: the ring of rationals whose denominator is a power of 2.

- Let \mathcal{A} be the $\mathbb{Z}\left[\frac{1}{2}\right]$-module generated by the initial sequence (x_1, \ldots, x_n).

- \mathcal{A} is invariant under the mean-median map.

- For a rational initial sequence, we have $\mathcal{A} = \frac{1}{d}\mathbb{Z}\left[\frac{1}{2}\right]$, where d is the largest odd divisor of the lcm of the denominators of the x_is.

- The module \mathcal{A} is a layered space

How deep do orbits sink?
The n-th effective exponent $\kappa(n)$: the largest exponent of 2 in the denominators of x_1, \ldots, x_n.

Substantial cancellations slow down the growth of $\kappa(n)$.

The trivial estimate $\kappa(n) \leq \lfloor n/2 \rfloor$ is unhelpful.
The n-th effective exponent $\kappa(n)$: the largest exponent of 2 in the denominators of x_1, \ldots, x_n.

The median is bounded by any repeated entry occurring above it.
The n-th effective exponent $\kappa(n)$: the largest exponent of 2 in the denominators of x_1, \ldots, x_n.

The median is bounded by any repeated entry occurring above it.

If so, and if $\kappa(n)$ grows sufficiently slowly (logarithmically), then stabilisation must occur over \mathbb{Q}.

Substantial cancellations slow down the growth of $\kappa(n)$.

The trivial estimate $\kappa(n) \leq \lfloor \frac{n}{2} \rfloor$ is unhelpful:
The n-th effective exponent $\kappa(n)$: the largest exponent of 2 in the denominators of x_1, \ldots, x_n.

The median is bounded by any repeated entry occurring above it.

If so, and if $\kappa(n)$ grows sufficiently slowly (logarithmically), then stabilisation must occur over \mathbb{Q}.

The trivial estimate $\kappa(n) \leq \left\lfloor \frac{n}{2} \right\rfloor$ is unhelpful:

![Graph showing the growth of $\kappa(n)$ over n]
The n-th effective exponent $\kappa(n)$: the largest exponent of 2 in the denominators of x_1, \ldots, x_n.

The median is bounded by any repeated entry occurring above it.

If so, and if $\kappa(n)$ grows sufficiently slowly (logarithmically), then stabilisation must occur over \mathbb{Q}.

The trivial estimate $\kappa(n) \leq \left\lfloor \frac{n}{2} \right\rfloor$ is unhelpful:

Substantial cancellations slow down the growth of $\kappa(n)$.

![Graph showing the growth of $\kappa(n)$ compared to $\frac{n}{2}$ with stabilization occuring over \mathbb{Q}.]
From numbers to piecewise-affine functions

\[Y_1(x) = 0 \]
\[Y_2(x) = x \]
\[Y_3(x) = 1 \]

We view the initial sequence \((0, x, 1)\) as a sequence of affine functions.
From numbers to piecewise-affine functions

We view the initial sequence \((0, x, 1)\) as a sequence of affine functions.
From numbers to piecewise-affine functions

\[Y_h(x) \]

\[M_3 \]
From numbers to piecewise-affine functions

\[Y_h(x) \]

\[\mathcal{M}_4 \]
From numbers to piecewise-affine functions
From numbers to piecewise-affine functions

M_6
From numbers to piecewise-affine functions

\[Y_n(x) \]

\[M_7 \]
From numbers to piecewise-affine functions

$Y_n(x)$

\mathcal{M}_8
From numbers to piecewise-affine functions

\[Y_n(x) \]

How ubiquitous are the singularities?
From numbers to piecewise-affine functions

How ubiquitous are the singularities?
The limit function $m(x) = \lim_{n \to \infty} M_n(x)$
The limit function \(m(x) = \lim_{n \to \infty} \mathcal{M}_n(x) \)
The limit function \(m(x) = \lim_{n \to \infty} M_n(x) \)

Conjecture [Chamberland & Martelli, 2007]

The limit function of \((0, x, 1)\) is continuous.
The limit function: what do we know?
The limit function: what do we know?

Near 1/2 [Schultz & Shiflett, 2005]
The limit function: what do we know?

- Near 1/2 [Schultz & Shiflett, 2005]
- Near all fractions with denominator at most 18 (computer-assisted proof) [Cellarosi & Munday, 2016]
The limit function: what do we know?

- Near $1/2$ [Schultz & Shiflett, 2005]
- Near all fractions with denominator at most 18 (computer-assisted proof) [Cellarosi & Munday, 2016]
The limit function: what do we know?

- Near $1/2$ [Schultz & Shiflett, 2005]
- Near all fractions with denominator at most 18 (computer-assisted proof) [Cellarosi & Munday, 2016]
The limit function: what do we know?

- Near 1/2 [Schultz & Shiflett, 2005]
- Near all fractions with denominator at most 18 (computer-assisted proof) [Cellarosi & Munday, 2016]
The limit function: what do we know?

- Near 1/2 [Schultz & Shiflett, 2005]
- Near all fractions with denominator at most 18 (computer-assisted proof) [Cellarosi & Munday, 2016]
Limit function vs. Takagi function
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]
\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]
[\[x\] = \min\{|x - n| : n \in \mathbb{Z}\}]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. **Takagi function**

\[m(x) = \mathcal{M}_3 + \sum_{n=4}^{\infty} \Delta \mathcal{M}_n \]

\[\Delta \mathcal{M}_n = \mathcal{M}_n - \mathcal{M}_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]
\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]
\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]

The limit function

The Takagi function
Limit function vs. Takagi function

\[m(x) = M_3 + \sum_{n=4}^{\infty} \Delta M_n \]

\[\Delta M_n = M_n - M_{n-1} \]

\[T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n} \]

\[[x] = \min \{|x - n| : n \in \mathbb{Z}\} \]

Continuous, unbounded variation everywhere, 1-D [Takagi, 1903]
Limit function vs. Takagi function

$$m(x) = \mathcal{M}_3 + \sum_{n=4}^{\infty} \Delta \mathcal{M}_n$$

$$\Delta \mathcal{M}_n = \mathcal{M}_n - \mathcal{M}_{n-1}$$

$$T(x) = \sum_{n=0}^{\infty} \frac{[2^n x]}{2^n}$$

$$[x] = \min \{|x - n| : n \in \mathbb{Z}\}$$

Continuous, unbounded variation everywhere, 1-D [Takagi, 1903]
The limit function near an X-point
The limit function near an X-point

an X-point
The limit function near an X-point

auxiliary function

an X-point of rank 1
The limit function near an X-point

auxiliary function of multiplicity 2

an X-point of rank 2
The limit function near an X-point

\[M_{\tau(p)-1} \]
The limit function near an X-point

\[M_{\tau(p) - 1} \]
The limit function near an X-point

\[
\mathcal{M}_{\tau(p)}
\]
The limit function near an X-point

\[M_{\tau(p)+1} \]
The limit function near an X-point

\[M_{\tau(p)+2} \]
The limit function near an X-point
The limit function near an X-point

\[M_{\tau(p)+4} \]
The limit function near an X-point

\[M_{\tau(p)+5} \]
The limit function near an X-point

\[\mathcal{M}_{\tau(p)+6} \]
The limit function near an X-point

The local shape of the limit function depends on whether the interval of regularity of the median remains finite or shrinks to p.

p
Theorem. The limit function near an X-point of rank at least 2:

\[\Rightarrow \text{either} \quad \text{or} \]

In our computations, we never encountered the second scenario.

Theorem. The limit function near an X-point of rank 1:

Under suitable conditions which hold in most cases.
Theorem. *The limit function near an X-point of rank at least 2:*

\[\Rightarrow \begin{cases} \text{either} \\ \text{or} \end{cases} \]

In our computations, we never encountered the second scenario.
Theorem. *The limit function near an X-point of rank at least 2:*

\[
\begin{align*}
\Rightarrow \text{ either } & \quad \text{ or } \\
\end{align*}
\]

In our computations, we never encountered the second scenario.

Theorem. *The limit function near an X-point of rank 1:*

\[
\begin{align*}
\Rightarrow \text{ under suitable conditions which hold in most cases } \\
\end{align*}
\]
Symmetry near an X-point
Symmetry near an X-point

Recall:

\[\text{Diagram of symmetry near an X-point} \]
Symmetry near an X-point

Recall:

\[O \]

Aim: Establish this near an X-point.
Symmetry near an X-point

Recall:

Aim: Establish this near an X-point.
Symmetry near an X-point

Recall:

Aim: Establish this near an X-point.
Symmetry near an X-point

Recall:

Aim: Establish this near an X-point.
Symmetry near an X-point

Recall:

Aim: Establish this near an X-point.
Symmetry near an X-point

Recall:

Aim: Establish this near an X-point.
Symmetry near an X-point

Recall:

Aim: Establish this near an X-point.

Q: Does the limit function also obey this symmetry?
Symmetry near an X-point

Recall:

Aim: Establish this near an X-point.

Q: Does the limit function also obey this symmetry?

Theorem

If $Y_{\tau(p)}$ is an affine combination of Y, $\min\{Y_i, Y_j\}$, and $\max\{Y_i, Y_j\}$, then all functions Y_n, $n \geq \tau(p)$, and hence the limit, obey the symmetry.
Normal form near an X-point
Normal form near an X-point

\[M_{t}^{-1} \]
Normal form near an X-point

\[Y_j \]

\[M_{t-1} \]

\[Y_i \]
Normal form near an X-point

Sufficiently close to a stabilised X-point, the dynamics is largely independent from pre-stabilisation data.
Normal form near an X-point

- A one-parameter family of dynamical systems involving only the functions passing through the X-point.

\[Y_{t+1}, Y_t, Y_i, Y_j \]

\[p \]

\[z_i := \frac{Y_i'}{\rightarrow 0} \quad \text{and} \quad z_i := \frac{Y_j'}{\rightarrow 1}. \]
Normal form near an X-point

▶ A one-parameter family of dynamical systems involving only the functions passing through the X-point.

▶ The parameter t is (essentially) the number of disregarded function, that is, the stabilisation time of the X-point.
Normal form near an X-point

- A one-parameter family of dynamical systems involving only the functions passing through the X-point.

- The parameter t is (essentially) the number of disregarded function, that is, the stabilisation time of the X-point.

- Only slopes matter, and we normalise them: $z_i := Y'_i \mapsto 0$ and $z_i := Y'_j \mapsto 1$.

Normal form near an X-point

- A one-parameter family of dynamical systems involving only the functions passing through the X-point.
- The parameter t is (essentially) the number of disregarded function, that is, the stabilisation time of the X-point.
- Only slopes matter, and we normalise them: $z_i := Y'_i \mapsto 0$ and $z_i := Y'_j \mapsto 1$.
- We obtain a sequence of normalised rational slopes $(0, 1, z_t, z_{t+1}, \ldots)$.
Normal form near an X-point

- A one-parameter family of dynamical systems involving only the functions passing through the X-point.

- The parameter t is (essentially) the number of disregarded function, that is, the stabilisation time of the X-point.

- Only slopes matter, and we normalise them: $z_i := Y'_i \mapsto 0$ and $z_j := Y'_j \mapsto 1$.

- We obtain a sequence of normalised rational slopes $(0, 1, z_t, z_{t+1}, \ldots)$.

- If this sequence stabilises, then the mean-median map stabilises in a small neighbourhood of all X-points with the given stabilisation time.
Normal form: the dynamics
Normal form: the dynamics

- The orbit \((0, 1, z_t, z_{t+1}, \ldots)\) for \(t = 55\).
Normal form: the dynamics

- The orbit \((0, 1, z_t, z_{t+1}, \ldots)\) for \(t = 55\).

\[\begin{array}{c}
\text{z}_n \\
\uparrow \\
t \quad \text{regular phase} \quad N_t \quad \text{irregular phase} \quad \tau_t \\
\end{array} \]

- Regular phase: \((t \leq n \leq N_t \sim t\sqrt{5})\)

\[
z_{t+4\ell+k} = \begin{cases}
\frac{\ell+1}{2} t + \ell^2 + \ell & \text{if } k = 0 \\
\frac{\ell+1}{2} t + \ell^2 + \ell + 1 & \text{if } k = 1 \\
\frac{5}{4} t^2 + \frac{5}{2} \ell t + 5\ell^2 - \ell & \text{if } k = 2 \\
\frac{5}{4} t^2 + \frac{5\ell+1}{2} t + 5\ell^2 + \ell - 1 & \text{if } k = 3.
\end{cases}
\]
Normal form: the dynamics

- The orbit \((0, 1, z_t, z_{t+1}, \ldots)\) for \(t = 55\).

- **Regular phase:** \((t \leq n \leq N_t \sim t\sqrt{5})\)

\[
z_{t+4\ell+k} = \begin{cases}
\frac{\ell+1}{2} t + \ell^2 + \ell & \text{if } k = 0 \\
\frac{\ell+1}{2} t + \ell^2 + \ell + 1 & \text{if } k = 1 \\
\frac{t^2}{4} + \frac{5}{2} \ell t + 5\ell^2 - \ell & \text{if } k = 2 \\
\frac{t^2}{4} + \frac{5\ell+1}{2} t + 5\ell^2 + \ell - 1 & \text{if } k = 3.
\end{cases}
\]

Slow growth of denominators: \(\{z_t, \ldots, z_{N_t}\} \subseteq \frac{1}{2^2} \mathbb{Z}\).
Stabilisation over \mathbb{Q}

Conjecture

The stabilisation time of the orbit of $(0, x, 1)$ is unbounded for $x \in \mathbb{Q}$.

What could go wrong?

Fact (a regular system)

The functional orbit of $(0, x, 1, 1)$ consists of 63 distinct functions. In particular, the stabilisation time is bounded over \mathbb{R}.

Theorem

There is a family ξ_i of rational initial sequences of increasing length, whose orbits have stabilisation time $\sim |\xi_i|^{2/3}$.

Conjecture

The stabilisation time of the orbit of $(0, x, 1)$ is unbounded for $x \in \mathbb{Q}$.

Fact (a regular system)

The functional orbit of $(0, x, 1, 1)$ consists of 63 distinct functions. In particular, the stabilisation time is bounded over \mathbb{R}.
Conjecture

The stabilisation time of the orbit of \((0, x, 1)\) is unbounded for \(x \in \mathbb{Q}\).

What could go wrong?
Stabilisation over \mathbb{Q}

Conjecture
The stabilisation time of the orbit of $(0, x, 1)$ is unbounded for $x \in \mathbb{Q}$.

What could go wrong?

Fact (a regular system)
The functional orbit of $(0, x, 1, 1)$ consists of 63 distinct functions. In particular, the stabilisation time is bounded over \mathbb{R}.
Stabilisation over \mathbb{Q}

Conjecture

The stabilisation time of the orbit of $(0, x, 1)$ is unbounded for $x \in \mathbb{Q}$.

What could go wrong?

Fact (a regular system)

The functional orbit of $(0, x, 1, 1)$ consists of 63 distinct functions. In particular, the stabilisation time is bounded over \mathbb{R}.

Theorem

There is a family ξ_i of rational initial sequences of increasing length, whose orbits have stabilisation time $\sim |\xi_i|^2/2$.
Normal form: improved computations

Using the normal form, we establish the strong terminating conjecture in specified neighbourhoods of 2^{791} fractions, improving [Cellarosi & Munday, 2016] by two orders of magnitude.

In these domains m is continuous, piecewise-affine with finitely many pieces.

The computed regular domains only cover 13.1% of the measure.
Normal form: improved computations

- Using the normal form, we establish the strong terminating conjecture in specified neighbourhoods of 2791 fractions, improving [Cellarosi & Munday, 2016] by two orders of magnitude.
Normal form: improved computations

- Using the normal form, we establish the strong terminating conjecture in specified neighbourhoods of 2791 fractions, improving [Cellarosi & Munday, 2016] by two orders of magnitude.
- In these domains m is continuous, piecewise-affine with finitely many pieces.

![Diagram of a regular domain](image-url)
Normal form: improved computations

- Using the normal form, we establish the strong terminating conjecture in specified neighbourhoods of 2791 fractions, improving [Cellarosi & Munday, 2016] by two orders of magnitude.

- In these domains m is continuous, piecewise-affine with finitely many pieces.

- The computed regular domains only cover 13.1% of the measure.
What happens on the missing measure?
Total variation V of the limit function sampled over the qth Farey fractions \mathcal{F}_q.
Total variation V of the limit function sampled over the qth Farey fractions \mathcal{F}_q

\[\ln V \sim 0.86 \ln |\mathcal{F}_q| \]
Total variation V of the limit function sampled over the qth Farey fractions \mathcal{F}_q

\[
\ln V \sim 0.86 \ln |\mathcal{F}_q|
\]

Conjecture
The Hausdorff dimension of the graph of the limit function is greater than 1.
A hierarchy of rationals

\[m(x) \]
A hierarchy of rationals

\[m(x) \]
A hierarchy of rationals
A hierarchy of rationals
A hierarchy of rationals
Thank you for your attention
Thank you for your attention

▶ J. Hoseana, The mean-median map, MSc thesis, Queen Mary University of London (2015).