
ON THE UNBOUNDEDNESS OF THE TRANSIT TIME OF

MEAN-MEDIAN ORBITS

JONATHAN HOSEANA AND FRANCO VIVALDI

Abstract. The transit time of mean-median orbits —the time it takes for an orbit to be-
come stationary— has been conjectured to be finite [6] but unbounded [4] over the rationals.
Through a study of some near-regular structures in these orbits, we construct two non-
trivial sequences of initial sets of increasing size for which the transit time grows linearly and
quadratically, respectively, with the size of the set.

1. Introduction

The mean-median map (mmm) is a dynamical system over the space of finite multisets1

of real numbers. This map enlarges a set by adjoining to it a new real number so that the
arithmetic mean of the enlarged set equals the median of the original set. The iteration of
this deceptively simple map produces a novel and intriguing dynamics, where the orbits are
shaped by the interaction with previous iterates. This dynamics is poorly understood, in
spite of considerable research [6, 2, 4, 1, 5]. Several conjectures —all still open— have been
formulated, the most prominent being:

Strong Terminating Conjecture [6]. For every initial set, the sequence of new numbers
generated by iterating the mmm is eventually constant.

We believe that this conjecture holds over the rationals, although not necessarily over larger
fields [4]. Accordingly, we associate to any initial set ξ the time step τ(ξ) ∈ N>|ξ| ∪ {∞} at
which its mmm sequence becomes constant, and the limit m(ξ) ∈ R of this sequence, if it
exists. These numbers are called the transit time and the limit of ξ, respectively.

In the simplest non-trivial case —a three-element initial set— it can be shown that the
dynamics is conjugate to that of the initial set [0, x, 1], x ∈

[
1
2 ,

2
3

]
, so that the transit time and

limit are functions of x (figure 1). In this case, computational evidence [figure 2 (a)] suggests
that, once the very large fluctuations are averaged out, the transit time for x = p

q depends

algebraically on the denominator q with exponent α ≈ 0.42 [4, 5]. Furthermore, the maximum
transit time of all fractions with denominator at most q is observed to depend algebraically
on q with the larger exponent β ≈ 1.45 [figure 2 (b)]. In particular, these observations suggest
that the transit time function over the space of three-element initial sets is unbounded.

We wish to study the unboundedness of transit time of mmm orbits in a more controlled
setting. For this purpose, we consider specific families of larger initial sets whose dynamics
is more predictable. Trivially, any initial set ξ whose mean and median coincide has τ(ξ) =
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1Hereafter referred to simply as sets.
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Figure 1. The transit time (left, in log-scale) and limit (right) of the initial set
[0, x, 1] as functions of x ∈

[
1
2 ,

2
3

]
sampled over fractions with denominator up to

2000.

|ξ| + 1, the orbit becoming constant after just one iteration. Furthermore, as we shall see
shortly, for every even k ∈ N there exists a sequence of sets ξ with |ξ| → ∞ and τ(ξ) = |ξ|+k.

In this paper, we shall improve upon such straightforward τ(ξ) ∼ |ξ| asymptotics by estab-
lishing the following result:
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Figure 2. (a) Logarithm of the q-th Cesaro mean τ̂q of the sequence (τq)
2000
q=2 of

average transit times τq of fractions with denominator q in the interval
[
1
2 ,

2
3

]
, versus

ln q. The line has equation ln τ̂q = α ln q + 2.31, where α ≈ 0.42. (b) Logarithm of
the maximum transit time Tq of fractions with denominator up to q in the interval[
1
2 ,

2
3

]
, versus ln q, for q ∈ {2, . . . , 2000}. The line has equation ln Tq = β ln q + 0.17,

where β ≈ 1.45.
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Figure 3. The normal form orbit of order 205 which features a regular, irregular,
and quasi-regular structure.

Theorem. a

i) For every k ∈ N0 there exists a sequence of sets ξ of increasing size for which

τ(ξ) ∼
√

3k + 5

k + 1
|ξ|.

ii) There exists a sequence of sets ξ of increasing size for which

τ(ξ) ∼ |ξ|
2

2
.

The proof will require the development of a theory of certain near-regular structures that are
found in some mmm sequences (figure 3).

To relate this result to the conjectured behaviour of the system [0, x, 1] we shall introduce a
suitable measure of complexity of rational sets. We will then show that there is a subsequence
of ii) above whose transit time grows algebraically with the complexity, with exponent lying
between the empirical exponents α and β of figure 2.

We now define the mmm precisely, and survey previous works. Let ξn0 = [x1, . . . , xn0 ],
n0 ∈ N, be an initial set. For every n > n0, the image ξn+1 of the set ξn is obtained by
adjoining the number xn+1 for which

(1) 〈ξn+1〉 =M (ξn) , i.e., xn+1 = (n+ 1)M (ξn)− S (ξn) ,

where 〈ξn〉,M (ξn), and S (ξn) denote the mean, median2, and sum of elements of ξn, respec-
tively. Formally, we write

ξn+1 := ξn ] [xn+1] ,

where the union operator ] increases the multiplicity of the number xn+1 in ξn by 1 to obtain
ξn+1. The iterations thus produce a sequence of sets (ξn)∞n=n0

, an orbit (xn)∞n=1, and a median

sequence (Mn)∞n=n0
, where Mn := M (ξn). If the sequence is eventually constant, it is said

to stabilise.

2The central element of the ordered list ξn if n is odd, otherwise the mean of the two central elements.
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Figure 4. A normal form orbit (purple) and the associated median sequence (blue)
during the regular phase.

The recursion (1) can be rewritten as a second-order recursion involving only the medians,
namely

(2) xn+1 = (n+ 1)Mn − nMn−1 = n∆Mn +Mn, where ∆Mn :=Mn −Mn−1,

which is valid for every n > n0 + 1. From this it follows that two equal consecutive medians
imply stabilisation [6, page 197] and that the median sequence is monotonic [2, theorem
2.1]. Due to symmetry —replacing ξn0 by −ξn0 reverses the monotonicity— we only need to
consider non-decreasing median sequences.

From equation (2) we see that every iterate beyond the second one depends only on two
central elements of the evolving set. In addition, if the initial set has zero median, then
equation (1) implies that the first iterate depends only on the sum of its elements. Exploiting
these facts, it is possible to construct an odd-sized initial set of the form3

(3) ξn0 =
[
`1, . . . , `n0−1

2

, 0, 1, u1, . . . , un0−3
2

]
,

where the `is and uis are chosen to be large enough in magnitude while keeping their sum
fixed, so that these elements do not participate in the dynamics of ξn0 for any time interval
of interest. In particular, if the `is, the uis, and xn0+1 are infinitely far, then the sequence
(xn)∞n=t, where t := n0 + 2, is the so-called normal form orbit of order t [5, section 6] which is
conjugate to the orbit near any stabilised local minimum of the limit function having transit
time t. Such minima have an intricate structure, see figure 1 (right).

Due to the absence of non-central elements in the initial set, the normal form orbit of order
t features an initial time interval of length Nt ∼ t

√
5 in which the orbit is predictable and

explicitly computable; this is the so-called regular phase (figure 3) [5, lemma 13]. If one of
these non-central elements is repositioned precisely at an odd-indexed median in the regular
phase, then the whole orbit becomes predictable; it consists of a regular structure which is
truncated due to stabilisation when this median is reached. For any given even k ∈ N we
can use this idea —choosing sufficiently long regular phases— to construct initial sets ξ of
arbitrarily large size for which τ(ξ) = |ξ|+ k, as suggested earlier.

During the regular phase, pairs of iterates which are linear and quadratic polynomials
in t are generated in alternation (figure 4). These linear and quadratic iterates form two

3The elements of ξn0 are written in non-decreasing order.
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Figure 5. The transit time τt of the normal form orbit of order t with its known
lower bound Nt + 2.

intertwined increasing sequences, each quadratic term lying above all linear ones:

0 < 1 < xt < xt+1 < xt+4 < xt+5 < · · ·︸ ︷︷ ︸
linear iterates

< xt+2 < xt+3 < xt+6 < xt+7 < · · ·︸ ︷︷ ︸
quadratic iterates

.

The non-decreasing median sequence

(Mn)∞n=t−2 = (0, 〈0, 1〉 , 1, 〈1, xt〉 , xt, 〈xt, xt+1〉 , xt+1, 〈xt+1, xt+4〉 , xt+4, . . .) ,

walks firstly across the linear iterates until it eventually reaches the first quadratic iterate
xt+2, i.e., MNt+2 = 〈xNt−2, xt+2〉, resulting in loss of regularity and concluding the regular
phase. The explicit description is therefore known only up to time Nt + 2. This number is
a lower bound for the transit time of the orbit (figure 5) since stabilisation does not occur
during the regular phase.

A key observation —which motivates our theory— is that each pair of consecutive linear
iterates [0, 1], [xt, xt+1], [xt+4, xt+5], . . . , [xNt+1, xNt+2] is generated when the median walks
across the preceding pair4, resulting in the following preservation of differences:

(4) 1 = xt+1 − xt = xt+5 − xt+4 = · · · = xNt+2 − xNt+1.

In this sense, the dynamics taking place in the regular phase can be regarded as recursive
reproductions of pairs of linear iterates.

The pairs of consecutive quadratic iterates, on the other hand, are generated when the
median walks across the gaps between two consecutive pairs of linear iterates (figure 4). For
example, the quadratic pair [xt+2, xt+3] is generated when the median walks across the gap
between 1 and xt. The fact that this gap is empty —contains no other iterate— implies that
the median requires only two iterations to walk across it, thereby generating only two iterates
which do not participate in the regular phase dynamics: xt+2 and xt+3.

In this paper we deal with phases which are not regular. Figure 3 suggests that there are
two qualitatively different such phases: one which can be regarded as a perturbed version of
the regular phase, and one which consists of straight segments of increasing length separated

4This means that the three consecutive medians involved in the computation of a pair are the
smaller element, the mean, and the larger element of the preceding pair. For example, [xt, xt+1] =
[tMt−1 − (t− 1)Mt−2, (t+ 1)Mt − tMt−1], where Mt−2 = 0, Mt−1 = 〈0, 1〉, and Mt = 1.
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by conspicuous spikes. We refer to the former as an irregular phase and the latter as a
quasi-regular phase.

In an irregular phase, the dynamics consists of the aforementioned recursive reproductions
of pairs, but the gaps between consecutive pairs are not necessarily empty; they may contain
previously-generated iterates (which we call obstacles) which create irregularities in the orbit
as the median walks across them. Later on we will construct a family of initial sets whose
orbits contain only an irregular phase with an arbitrary number of obstacles in each gap.
The transit time of such a family grows linearly as in part i) of our main theorem, where the
coefficient depends on the number of obstacles.

In a quasi-regular phase, the dynamics is similar, but the reproducing subsets have larger
cardinalities. Notice that, when a three-element subset, say, reproduces, the median walks
across its elements requiring four iterations. Similarly, a four-element subset requires six
iterations, a six-element subset requires ten iterations, and so on, producing the growth of the
length of the straight segments in a quasi-regular phase visible in figure 3. As a consequence,
a family of initial sets whose orbits contain only a quasi-regular phase exhibits a quadratic
growth of transit time as in part ii) of the theorem.

This paper is organised as follows. In section 2 we introduce the notion of ready subsets
(abbreviated as R-subsets) and state the reproduction lemma which explains how an R-subset
reproduces. Then we specialise this lemma to the cases in which the reproducing subset is an
arithmetic progression and a pair (corollary 1).

In section 3 we present two algorithms implementing recursive reproductions of these two
types of subsets: algorithm A which generates a quasi-regular structure and algorithm B which
generates a regular or an irregular structure depending on the presence or absence of obstacles.
In section 4, we use these algorithms to give a constructive proof of our main theorem. In the
last section, we show that part ii) of the main theorem gives a family of sets whose transit
time grows with the complexity with exponent which is larger than that observed on average
in the system [0, x, 1] [figure 2 (a)], but smaller than the exponent associated with the largest
fluctuations [figure 2 (b)].

Acknowledgements: The first author thanks Indonesia Endowment Fund for Education
(LPDP) for the financial support.

2. Reproduction of subsets

Throughout this paper we assume that the median sequence is non-decreasing. A subset
of [x′1, . . . , x

′
n], where n > 3 is odd and x′1 6 · · · 6 x′n, is ready (or is an R-subset) if

i) it is of the form
[
x′i, . . . , x

′
i+k

]
for some i ∈ {1, . . . , n} and k ∈ {0, . . . , n− i};

ii) x′1 =Mn;

iii) the sequence of first differences (∆xj)
i+k
j=i+1, where ∆xj := xj − xj−1, is positive and

non-decreasing.

Notice that iii) implies that an R-subset contains no repetition. For example, [4, 6] and
[4, 6, 8] are R-subsets of [2, 2, 3, 4, 6, 8, 9], whereas [4, 8], [3, 4, 6], and [4, 6, 8, 9] are not, since
they violate i) only, ii) only, and iii) only, respectively. Clearly, an R-subset has size at most
n+1

2 .
For convenience, let us agree that the elements of an R-subset are always indexed according

to their ordering on the line. In other words, by writing an R-subset as [u0, . . . , uk] we mean
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that u0 6 · · · 6 uk. In an mmm orbit, an R-subset generates —as the median walks across its
elements— a similar structure whose size is twice the number of its first differences. This is
detailed in the following result.

Reproduction Lemma. If ζ = [u0, . . . , uk] ⊆ ξn is ready and xn+1, xn+2 > uk, then for
every j ∈ {2, . . . , 2k + 1} we have

(5) xn+j =

{
∆u`

2 n+ `∆u` + u`−1 if j = 2` for some ` ∈ N
∆u`

2 n+ `∆u` + u` if j = 2`+ 1 for some ` ∈ N.

Proof:
Assume that ζ ⊆ ξn is ready and xn+1, xn+2 > uk. We will prove by strong induction that

(6) For every j ∈ {2, . . . , 2k + 1} we have (5) and xn+j > uk.

For the base case j = 2, (5) is true because

xn+2 = (n+ 2)Mn+1 − (n+ 1)Mn = (n+ 2)〈u0, u1〉 − (n+ 1)u0 =
∆u1

2
n+ `∆u1 + u0,

where the condition Mn+1 = 〈u0, u1〉 follows from xn+1 > uk which is a part of our assump-
tion. The inequality xn+2 > uk is also a part of our assumption.

Now suppose (6) holds for every j ∈ {2, . . . , r − 1}, for some r ∈ {3, . . . , 2k + 1}. We shall
show that it also holds for j = r. As a part of our assumption we have xn+1 > uk. Combining
this with the inductive hypothesis, we have xn+1, . . . , xn+r−1 > uk, so

Mn+r−1 =

{
〈u`−1, u`〉 if r = 2`

u`−1 if r = 2`+ 1

and

Mn+r−2 =

{
u` if r = 2`

〈u`−1, u`〉 if r = 2`+ 1.

Using these, straightforward applications of (2) in both cases yield (5). Moreover, the fact

that (∆ui)
k
i=1 is positive and non-decreasing implies that xn+r > xn+r−1. Since the latter is

at least uk by inductive hypothesis, the proof is complete.

Let us make some remarks regarding the reproduction lemma.
Property iii) in the definition of ready is necessary. Indeed, the above theorem is not

valid for the subset [0, 100, 101, 110] of any ξ9 for which x10 > 110. Notice that this subset
satisfies i) and ii), but not iii) since its first differences form a non-monotonic sequence. As a
consequence, we have x11 = 600 > 110, but x12 = 106 < 110 which becomes an obstacle.

The sequence (∆xn+j)
2k+1
j=3 of the first differences of the new iterates is positive but not

necessarily non-decreasing. Indeed, from (5) we have that, for every j ∈ {3, . . . , 2k + 1},

(7) ∆xn+j =

{
∆u`−∆u`−1

2 n+ ` (∆u` −∆u`−1) + ∆u`−1 if j = 2`

∆u` if j = 2`+ 1,

which is positive because the ∆u`s are positive and non-decreasing [property iii)]. More-
over, for the ready subset [0, 2, 6] of any ξ9 such that x10 > 6, we have (x11, x12, x13, x14) =
(11, 13, 28, 32) whose first differences form the non-monotonic sequence (2, 15, 4).
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If ζ is an arithmetic progression of order d (a progression whose n-th term is given by a
polynomial of degree d in n [3, theorem 6]), then the leading and constant coefficients of xn+j

in (5) are polynomials of degrees at most d− 1 and at most d, respectively, whereas those of
∆xn+j in (7) are polynomials of degrees at most d− 2 and d− 1, respectively. In the rest of
the paper we shall deal only with the case d = 1.

In the case d = 1, namely that in which ζ is an arithmetic progression (of order 1), we
shall prove that the condition xn+2 > uk always holds, and that the new points given by (5)
also form an arithmetic progression with the same modulus. This is stated in part i) of the
following corollary, which will be the basis for the construction of a quasi-regular phase. Part
ii) contains the special case k = 1, which is the basis for the construction of a regular or an
irregular phase, depending on the presence of obstacles.

Corollary 1. a

i) Suppose that ζ = [u0, . . . , uk] ⊆ ξn is a ready arithmetic progression of modulus b > 0.
If xn+1 > uk, then for every j ∈ {2, . . . , 2k + 1} we have

(8) xn+j = b
(n

2
+ j − 1

)
+ u0.

ii) Suppose that ζ = [u0, u1] ⊆ ξn is ready. If xn+1 > u1, then we have

(9) xn+2 =
u1 − u0

2
n+ u1 and xn+3 =

u1 − u0

2
n+ 2u1 − u0.

Proof:
First we prove part i). If the given conditions hold, thenMn = u0 andMn+1 = 〈u0, u0 +b〉 =
u0 + b

2 since xn+1 > uk, so by (2) one obtains xn+2 = b
(
n
2 + 1

)
+ u0 > kb + u0 = uk since

k 6 n−1
2 and b > 0. Hence, the reproduction lemma applies, giving part i). Setting k = 1

gives part ii).

Notice that (8) can be rewritten as

xn+j =

(
bn

2
+ u0

)
+ (j − 1)b

showing that the location of the new arithmetic progression relative to the old one depends
on b, n, and u0. In addition, (9) implies

xn+3 − xn+2 =

(
u1 − u0

2
n+ 2u1 − u0

)
−
(
u1 − u0

2
n+ u1

)
= u1 − u0,

explaining (4) in a more general context.

3. Recursive reproductions of subsets

We have seen in corollary 1 that a ready arithmetic progression generates a new arithmetic
progression as the median walks across its elements. Naturally, we are interested in the case
where the new arithmetic progression becomes ready at a future time, and hence generates a
third arithmetic progression in the orbit. The process can continue if the third progression
eventually becomes ready and generates a fourth progression, and so on. In such circumstance
we speak of recursive reproductions of arithmetic progressions.

It turns out that recursive reproductions of arithmetic progressions occur in some normal
form orbits, where they generate quasi-regular structures. In section 3.1 we distil this process
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Figure 6. The normal form orbit of order 261 which features a regular, irregular,
and quasi-regular structure.
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Figure 7. First few successive arithmetic progressions in the quasi-regular phase of
the normal form orbit of order 261.

in an algorithm which describes it in a general setting (algorithm A). In section 3.2, we then
modify the algorithm to implement recursive reproductions of pairs (algorithm B).

Later we shall apply these algorithms to construct families of initial sets which establish
our main theorem.

3.1. Recursive reproductions of arithmetic progressions. We begin with an example.
Consider the normal form orbit of order 261 (figure 6). The set γ641 contains the subset
AP0 := [x630, x637, x638] which is a ready arithmetic progression. Since x642 > x638, then the
subset generates

AP1 := [x643, x644, x645, x646] .

Next, AP1 ⊆ γ647 is ready and x647 > x646, so AP1 generates the next arithmetic progres-
sion

AP2 := [x649, x650, x651, x652, x653, x654] .
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For this particular orbit, the process continues in the same way until ten arithmetic progres-
sions AP1, . . . , AP10 are generated5 (the first five are shown in figure 7), with the sequence
of time steps ni at which APi is ready being

(n0, n1, . . . , n9) = (641, 647, 655, 671, 693, 729, 803, 935, 1195, 1715) .

From the corollary, these arithmetic progressions have the same modulus —which is 1
4— and

their lengths grow exponentially.

arithmetic progression AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10

first term x643 x649 x657 x673 x695 x731 x805 x937 x1197 x1717

last term x646 x654 x666 x690 x728 x796 x934 x1194 x1710 x2742

length 4 6 10 18 34 66 130 258 514 1026

Motivated by the above example, let us now develop an algorithm which implements re-
cursive reproductions of arithmetic progressions in a general orbit, and produces explicit
formulae for all the straight segments in the generated quasi-regular structure. The input
is a set containing a ready arithmetic progression of length three. Since the mmm preserves
affine-equivalence6, we can assume that the arithmetic progression is [0, 1, 2]. The algorithm
consists of a loop. At each iteration, it generates the arithmetic progression prescribed by
part i) of corollary 1 and checks whether this progression becomes ready at some future time
step. If so, the next iteration is performed, otherwise the algorithm stops.

Algorithm A (Recursive reproductions of arithmetic progressions). a

input: A set ξn0 with R-subset AP0 = [0, 1, 2], where n0 > 5 is odd and xn0+1 >
max (AP0).

output: Sequences (n0, . . . , nN−1) and (AP1, . . . ,APN ) =
([
xni+2, . . . , xni+2|APi|−1

])N−1

i=0
,

where
i) For every i ∈ {0, . . . , N − 1}, APi ⊆ ξni is ready and generates APi+1 ac-

cording to part i) of corollary 1.
ii) N is the largest positive integer i such that APi exists.

1 go-on := true
2 i := 0
3 while go-on do
4 for j ∈ {2, . . . , 2 |APi| − 1} do

5 xni+j := j + i− 1 + 1
2

∑i
`=0 n`

6 end do
7 APi+1 :=

[
xni+2, . . . , xni+2|APi|−1

]
8 k := ni + 2
9 go-on := false

10 while Mk−1 6=Mk and Mk 6 xni+2 do
11 if APi+1 ⊆ ξk is ready and xk+1 > max (APi+1) then
12 ni+1 := k
13 go-on := true
14 end if

5AP10 = [x1717, . . . , x2742] ⊆ γ2740 is not intact since x1966 < x284 < x1967, hence it never becomes ready.
6If [x1, . . . , xn] 7→ [x1, . . . , xn, xn+1] then [ax1 + b, . . . , axn + b] 7→ [ax1 + b, . . . , axn + b, axn+1 + b] for

every a, b ∈ R.
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15 k := k + 2
16 end do
17 i := i+ 1
18 end do
19 return ((n0, . . . , nN−1) , (AP1, . . . ,APN ))

Notice that an input set with the prescribed properties exists, e.g., [−3,−3, 0, 1, 2]. We
now prove the correctness of the algorithm.

Proposition 2. Algorithm A is correct and terminates if the input set stabilises.

Proof:
Let L be the boolean expression

[i = 0] ∨
[(

APi−1 ⊆ ξni−1 is ready
)
∧ (APi−1 generates APi)

]
.

We shall prove that L is a loop invariant for the outer while-loop (lines 3 to 18) of the
algorithm. Consider such a loop. At the start of the first execution we have i = 0, so L holds.
We next prove that L holds at the end of every execution of the statement-sequence of the
loop. We split the proof into two cases:

Case I: At the start of the loop we have i = 0. In this case go-on = true, and the algorithm
computes

AP1 = [xn0+2, . . . , xn0+5] ,

where xn0+j = n0
2 + j− 1 for every j ∈ {2, 3, 4, 5}. At the end of the execution we have i = 1,

so the left expression in L is false, but the right one is true because AP0 ⊆ ξn0 is ready by
the prescribed properties of ξn0 , and AP0 generates AP1, as easily checked. At the end of
the loop, if go-on = false, then the algorithm terminates. Otherwise, the algorithm continues
and we proceed to Case II.

Case II: At the start of the loop we have i = i′ > 1. At the end of the loop we have
i = i′ + 1 > 2; since the left expression in L is false, we must show that the conjunction on
the right is true, namely that APi′ ⊆ ξni′ is ready and generates APi′+1 according to part i)
of corollary 1. Since go-on = true, in the previous execution the algorithm must have entered
the inner while-loop (lines 10 to 16) and executed the statement-sequence of the if-structure,
which means that APi′ ⊆ ξni′ is ready, proving the first half of the desired statement. It now
remains to prove that APi′+1 agrees with part i) of corollary 1. From the previous execution
we know that

APi′ =
[
xni′−1+2, . . . , xni′−1+2|APi′−1|−1

]
,

where xni′−1+j = j + i′− 2 + 1
2

∑i′−1
`=0 n` for every j ∈ {2, . . . , 2 |APi′−1| − 1}, is an arithmetic

progression with modulus 1 and first term i′ + 1
2

∑i′−1
`=0 n`. Therefore, by part i) of corollary

1 (which can be applied because the first half of the desired statement holds), we obtain

xni′+j = 1 ·
(ni′

2
+ j − 1

)
+

(
i′ +

1

2

i′−1∑
`=0

n`

)
= j + i′ − 1 +

1

2

i′∑
`=0

n`

for every j ∈ {2, . . . , 2 |APi′ | − 1}, which is precisely how the algorithm computes APi′+1 in
the execution being considered. The proof that L is a loop invariant is complete.
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Next we prove that if the orbit of the input set stabilises, then the algorithm terminates.
We begin to show that each time the statement-sequence of the outer while-loop is executed,
the value of k assigned on line 8 increases (if previously assigned). The first execution always
takes place. For any subsequent execution to take place, the loop-control variable go-on
must have value true, which requires the flow to enter the inner while-loop and execute the
statement-sequence of the if-structure. Consequently, at the end of this previous iteration,
the value of the recently-created variable ni is at least the value of k as assigned on line 8 (in
this previous execution). In the current execution, line 8 then assigns to k the value ni + 2,
which is therefore larger than its value defined on the same line in the previous execution.
Since the input set stabilises, then the algorithm must eventually reach a value of k for which
Mk−1 =Mk. In an execution where such a value of k is reached, the inner while-loop is not
performed, and hence the execution ends with go-on = false, terminating the algorithm.

Since the algorithm terminates, the integer N stated in the output exists. Since the
second alternative in L is proved to hold at the end of every iteration which is not the first
one, we have also proved that the algorithm returns the correct output.

In the algorithm we have |AP0| = 3, and, by part i) of corollary 1, |APi| = 2 |APi−1| − 2
for every i ∈ {1, . . . , N}. Solving this recursion gives

|APi| = 2i + 2 and |AP0|+ |AP1|+ · · ·+ |APi| = 2i+1 + 2i− 2

for every i ∈ {0, . . . , N}.

3.2. Recursive reproductions of pairs. Let us now turn to recursive reproductions of
pairs. We already know that such reproductions take place in the regular phase of a normal
form orbit. Here, the recursive reproductions of pairs of linear iterates

[xt, xt+1] 7→ [xt+4, xt+5] 7→ . . . 7→ [xNt+1, xNt+2] ,

where t is the order, is based on the fact that, for every ` ∈ {0, . . . , Nt−t−3
4 }, the pair

[xt+4`, xt+4`+1] ⊆ γt+4`+2 is ready and, since xt+4`+3 > xt+4`+1, generates the pair [xt+4`+4, xt+4`+5].
In a regular phase, however, there are no obstacles. Our aim now is to modify algorithm

A to implement recursive reproductions of pairs which, in general, may be perturbed by
obstacles. To denote the reproducing pairs we will use P0, . . . , PN which will replace AP0,
. . . , APN in the algorithm.

Two modifications in the algorithm are required. First, the R-subset AP0 = [0, 1, 2] of the
input set ξn0 needs to be replaced by P0 = [0, 1]. As a consequence, the for-loop (lines 4 to 6)

consists only of two iterations, so it can be rewritten more simply as xni+2 := i+1+ 1
2

∑i
`=0 n`

and xni+3 := xni+2 + 1.
The second modification concerns termination of the algorithm. In the case of a quasi-

regular phase, the algorithm terminates if stabilisation has been reached or the latest arith-
metic progression never becomes ready (line 10). An irregular phase, however, does not typ-
ically end with stabilisation (recall figures 3 and 6). Therefore, the condition Mk−1 6= Mk

(line 10) needs a replacement. In order to find a suitable replacement condition, let us study
the first irregular phase in the normal form orbit of order 205 (figure 3).

For this orbit we have N205 = 456, and hence the last reproduction of linear pairs in the
regular phase is [x453, x454] 7→ [x457, x458]. Now the elements of γ458 are

0 < 1 < · · · < x449 < x450︸ ︷︷ ︸
a linear pair

< x453 < x454︸ ︷︷ ︸
a linear pair

< x207 < x457 < x458︸ ︷︷ ︸
a linear pair

< x208 < · · · < x455 < x456.
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Figure 8. Early evolution in normal form orbit of order 205.

Notice that the gap between the linear pairs [x453, x454] and [x457, x458] is not empty; it con-
tains an obstacle, namely the first quadratic iterate x207. Consequently, the median sequence
requires more than two iterations to walk from the former pair to the latter. In fact, we have

(Mn)461
n=457 = (x454, 〈x454, x207〉 , x207, 〈x207, x457〉 , x457) .

These medians generate four iterates

x459 = −458M457 + 459M458,
x460 = −459M458 + 460M459,

x461 = −460M459 + 461M460,
x462 = −461M460 + 462M461

before the linear pair [x457, x458] becomes an R-subset of γ461 and generates the next linear
pair [x463, x464]. See figure 8.

In the above dynamics, the gap between the linear pairs [x449, x450] and [x457, x458] contains
an obstacle x207 with the property that the differences x457−x207 = 343

4 and x207−x450 = 1473
4

are both greater than the difference of the elements of the reproducing pairs, namely

1 = min {2∆Mi : i ∈ {205, . . . , n}} =: µn

for every n ∈ {205, . . . , 461}. Randomness of obstacles makes it possible that the value of
this quantity decreases at a future time step, hence bringing the median sequence closer to
convergence. Let us explain the first decrease in the normal form orbit of order 205.

The first irregular phase continues with the following recursive reproductions of linear pairs
of difference 1 (figure 9):

[x457, x458] 7→ [x463, x464] 7→ [x469, x470] 7→ [x475, x476] 7→ [x481, x482] 7→ [x485, x486] 7→
[x493, x494] 7→ [x497, x498] 7→ [x505, x506] 7→ [x509, x510] 7→ [x517, x518] 7→ [x521, x522].

However, it turns out that the pair [x521, x522] does not reproduce; it never becomes ready
since x521 < x228 < x522. When the median walks across the pair [x521, x228], which has a
smaller difference x228 − x521 = 3

4 , the value of µn decreases, i.e., µ526 = 3
4 , marking the end

of the first irregular structure (see figures 3 and 10).
This example shows that a sufficient condition for termination of the algorithm is a decrease

in the minimum value of the difference of two consecutive medians. Since this minimum value
is initially 1

2 , we replace the condition Mk−1 6=Mk in the algorithm with Mk −Mk−1 > 1
2 .

The new algorithm reads as follows.
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Figure 9. The first irregular phase of the normal form orbit of order 205.
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Figure 10. The sequence (µn)
2465
n=205.

Algorithm B (Recursive reproductions of pairs). a

input: A set ξn0 with R-subset P0 = [0, 1], where n0 > 3 is odd and xn0+1 > max (P0).

output: Sequences (n0, . . . , nN−1) and (P1, . . . ,PN ) = ([xni+2, xni+3])N−1
i=0 , where

i) For every i ∈ {0, . . . , N − 1}, Pi ⊆ ξni is ready and generates Pi+1 according
to part ii) of corollary 1.

ii) N is the largest positive integer i such that Pi exists and min{2∆Mn : n0 +
1 6 n 6 ni−1} = 1.

1 go-on := true
2 i := 0
3 while go-on do
4 xni+2 := i+ 1 + 1

2

∑i
`=0 n`

5 xni+3 := xni+2 + 1
6 Pi+1 := [xni+2, xni+3]
7 k := ni + 2
8 go-on := false
9 while ∆Mk >

1
2 and Mk 6 xni+2 do

10 if Pi+1 ⊆ ξk is ready and xk+1 > max (Pi+1) then
11 ni+1 := k
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12 go-on := true
13 end if
14 k := k + 2
15 end do
16 i := i+ 1
17 end do
18 return ((n0, . . . , nN−1) , (P1, . . . ,PN ))

Clearly, we have the following.

Proposition 3. Algorithm B is correct and terminates if there exists k > n0 + 1 such that
∆Mk <

1
2 .

4. Proof of main theorem

Let us first sketch the idea of the proof.
Choose a quasi-regular phase; for instance, that in which there are exactly four reproduc-

ing arithmetic progressions AP0 = [0, 1, 2], AP1, AP2, AP3 and the gap between every two
consecutive progressions is empty. Using algorithm A, we then construct an initial set whose
orbit begins with this phase, by identifying sufficient conditions on its non-participating el-
ements —in the form of inequalities— which guarantee the absence of obstacles until the
median sequence reaches the largest element of AP2 (therefore completing the production of
AP3). Moreover, by positioning a non-central element of the initial set at this median, we can
also force the orbit to stabilise immediately after the map finishes generating the specified
structure.

The above idea can also be applied, using algorithm B, if we specify any form of irregular
or regular phase.

Proof of part i):
Fix k > 0, and fix N > 2. We will construct an initial set ξn0 whose orbit consists of N > 2
reproducing pairs and stabilises at the larger element of the second-to-last pair, where the
gap between every two consecutive pairs which the median walks across before stabilisation
is partitioned uniformly by exactly k equally-spaced obstacles which are elements of ξn0 .

Let us first determine the minimum value of n0 in terms of N and k. Clearly, the largest
n0+1

2 elements of ξn0 must contain the first pair, k(N − 1) obstacles, and possibly other
non-participating elements, so we must have

n0 + 1

2
> k(N − 1) + 2,

i.e.,

(10) n0 > 2k(N − 1) + 3 > 3.

The first two pairs in the orbit are P0 =
[
xn−1+2, xn−1+3

]
= [0, 1] and P1 = [xn0+2, xn0+3].

Since 1 = Mn0+2 and there are exactly k obstacles between these two pairs, then xn0+2 =
Mn0+2k+4, which means the pair P1 is ready at time n1 = n0 + 2k + 4. Continuing this, we
have that

ni = ni−1 + 2k + 4 for every i ∈ {1, . . . , N − 1}.
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Solving this recursion gives

ni = n0 + (2k + 4)i for every i ∈ {1, . . . , N − 1}.
By algorithm B, the N generated pairs are

(P1, . . . ,PN ) = ([xni+2, xni+3])N−1
i=0

=

([
i+ 1

2
n0 +

k + 2

2
i2 +

k + 4

2
i+ 1,

i+ 1

2
n0 +

k + 2

2
i2 +

k + 4

2
i+ 2

])N−1

i=0

.(11)

Notice that the obstacles form N − 1 arithmetic progressions, each of length k, which,
together with the endpoints of the respective gaps form arithmetic progressions of length
k+ 2. For every i ∈ {0, . . . , N −2}, the i-th arithmetic progression [max (Pi) , . . . ,min (Pi+1)]
is ready at time ni + 2 and, since xni+3 > min (Pi+1) = xni+2, generates the intermediate
iterates xni+4, . . . , xni+1+1 with xni+4 < · · · < xni+1+1 by part i) of corollary 1. Now, for
every i ∈ {1, . . . , N − 2} we have

xni+4 − xni+1 = [(ni + 4)Mni+3 − (ni + 3)Mni+2]− [(ni + 1)Mni − niMni−1]

= (ni + 4)

〈
xni−1+3, xni−1+3 +

1

k + 1

(
xni+2 − xni−1+3

)〉
− (ni + 3)xni−1+3

−
[
(ni + 1)xni−1+2 − ni

〈
xni−2+3 +

k

k + 1

(
xni−1+2 − xni−2+3

)
, xni−1+2

〉]
=

(−ni + 2k − 2)xni−1+3 − (ni + 4)xni+2 + nixni−2+3 − (ni + 2k + 2)xni−1+2

2k + 2

=
n0

2 + [(2i+ 4)k + 4i+ 10]n0 +
[
4ik2 + (24i+ 4)k + 32i+ 4

]
4k + 4

> 0.

Therefore, to guarantee that intermediate iterates are all greater than or equal to
max (PN−1) = xnN−2+3, it suffices to impose the condition

xn0+4 > max (PN−1) .

Using (11) and the fact that

xn0+4 = (n0 + 4)Mn0+3 − (n0 + 3)Mn0+2

= (n0 + 4)

〈
1, 1 +

1

k + 1
(xn0+2 − 1)

〉
− (n0 + 3) · 1

=
n0

2

4k + 4
+

n0

k + 1
+ 1,

the condition above is equivalent to

n0
2

4k + 4
+

n0

k + 1
+ 1 >

N − 1

2
n0 +

k + 2

2
(N − 2)2 +

k + 4

2
(N − 2) + 2,

namely,

(12)
n0

2

4k + 4
+

(1−N)k −N + 3

2k + 2
n0 −

k + 2

2
N2 +

3k + 4

2
N − k − 1 > 0,

or, equivalently,

(13) n0 > N (k,N),
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where

N (k,N) := (k + 1)N − k − 3

+
√

(3k2 + 8k + 5)N2 + (−8k2 − 22k − 14)N + (5k2 + 14k + 13)

is the larger root of the quadratic polynomial in n0 on the left hand side of (12). Using (10)
and (13), we can now assign to n0 its minimum value, namely,

n0 = min {n > 3 odd : n > 2k(N − 1) + 3 and n > N (k,N)} .
Since the second condition is stronger, we have

(14) n0 =

{
dN (k,N)e if dN (k,N)e is odd

dN (k,N)e+ 1 otherwise.

Therefore, if we let

(15) ξn0 =

[
`1, . . . , `n0−1

2

, 0, 1, o1, . . . , ok(N−1), u1, . . . , un0−2k(N−1)−3
2

]
,

where o1, . . . , ok(N−1) are the specified obstacles and `1, . . . , `n0−1
2

, u1, . . . , un0−2k(N−1)−3
2

are

chosen to satisfy

`1, . . . , `n0−1
2

, u1, . . . , un0−2k(N−1)−3
2

/∈ (0,max (PN−1))

and

xn0+1 = max (PN−1) , i.e., − S (ξn0) =
N − 1

2
n0 +

k + 2

2
(N − 2)2 +

k + 4

2
(N − 2) + 2,

then we haveMnN−1+2 =MnN−1+3 as the first two equal consecutive medians, implying that

τ (ξn0) = nN−1 + 4

= n0 + (2k + 4)(N − 1) + 4

∼
(

1 +
2k + 4

k + 1 +
√

3k2 + 8k + 5

)
n0

=

√
3k + 5

k + 1
n0,

proving the theorem.

Notice that the case k = 0 of this theorem represents the regular phase of a normal form
orbit, whose length is asymptotic to

√
5 times its order. As k →∞, this coefficient decreases

and approaches
√

3.
As an example, let us write down an initial set prescribed by the above proof whose orbit

has k = 1 obstacle in each gap (so that the transit time of the set is asymptotic to twice
its size) and N = 5 generated pairs. First, by (14), we obtain n0 = 21. Next, by (11), the
reproducing pairs are

(P0,P1,P2,P3,P4,P5) =

(
[0, 1] ,

[
23

2
,
25

2

]
, [26, 27] ,

[
87

2
,
89

2

]
, [64, 65] ,

[
175

2
,
177

2

])
,

so that the obstacles are

(o1, o2, o3, o4) =

(〈
1,

23

2

〉
,

〈
25

2
, 26

〉
,

〈
27,

87

2

〉
,

〈
89

2
, 64

〉)
=

(
25

4
,
77

4
,
141

4
,
217

4

)
.
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21 23 29 35 41 47 49
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65 n
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Figure 11. The orbit of the input set (16). The input set is shown in dark blue,
the generated pairs in purple, the intermediate iterates in light blue, and the iterate
from which the orbit stabilises in green.

Therefore, by (15), our initial set is

ξ21 =

[
`1, . . . , `10, 0, 1,

25

4
,
77

4
,
141

4
,
217

4
, u1, . . . , u5

]
,

where `1, . . . , `10, u1, . . . , u5 must be chosen to satisfy the conditions

`1, . . . , `10, u1, . . . , u5 /∈ (0, 65) and − S (ξ21) = 65.

Let us choose u1 = · · · = u5 = 65 and `2 = · · · = `10 = 0, so that the second condition
uniquely determines the value of

`1 = −65−
(

9 · 0 + 0 + 1 +
25

4
+

77

4
+

141

4
+

217

4
+ 5 · 65

)
= −506

which satisfies the first condition, giving

(16) ξ21 =

−506, 0, . . . , 0︸ ︷︷ ︸
9

, 0, 1,
25

4
,
77

4
,
141

4
,
217

4
, 65, . . . , 65︸ ︷︷ ︸

5

 .
The transit time of this set is 49 and its orbit is shown in figure 11.

Finally, let us prove part ii) of the theorem using the same idea and algorithm A. Here we
choose the simplest form of quasi-regular phase, i.e., that in which there are no obstacles.

Proof of part ii):
Fix N > 2. We will construct an initial set ξn0 whose orbit consists of N > 2 reproducing
arithmetic progressions and stabilises at the largest element of the second-to-last progression,
where the gap between every two consecutive progressions is empty.

Let us first determine the minimum value of n0 in terms of N . For every i ∈ {1, . . . , N−1},
there is no obstacle between APi−1 and APi. Since max (APi−1) = Mni−1+2|APi−1|−2 and
there is no obstacle between these two progressions, then min (APi) = Mni−1+2|APi|, which
means the progression APi is ready at time

ni = ni−1 + 2 |APi−1| .
Solving this recursion gives

ni = n0 + 2i+1 + 4i− 2 for every i ∈ {1, . . . , N − 1}.
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The intermediate iterates are

xn0+1, xn1 , xn1+1, xn2 , xn2+1, . . . , xnN−1 , xnN−1+1.

For every i ∈ {1, . . . , N − 1}, by part ii) of corollary 1 we have xni+1 > xni because these two
iterates are generated when the median walks across the pair [max (APi−1) ,min (APi)], and
by algorithm A we have

xni =

{
n1 〈2, xn0+2〉 − (n1 − 1) · 2 if i = 1

ni
〈
xni−2+2|APi−2|−1, xni−1+2

〉
− (ni − 1)xni−2+2|APi−2|−1 if 2 6 i 6 N − 1

=
n0

2

4
+

(
5

2
i− 5

2
+ 2i−1

)
n0 + (i− 1)2i+1 + 5i2 − 11i+ 5.(17)

Moreover, we have

xni − xni−1 =

(
2i−2 +

5

2

)
n0 +

(
i2i + 10i− 16

)
> 0 for every i ∈ {2, . . . , N − 1}.

Therefore, to guarantee that intermediate iterates are all greater than or equal to

(18) max (APN−1) =
N − 1

2
n0 + 2N +N2 − 3N + 2,

it suffices to impose the condition

xn1 > max (APN−1) ,

which is equivalent to

(19)
n0

2

4
+

3−N
2

n0 − 2N −N2 + 3N − 3 > 0

by (17) and (18). In other words,
n0 > N (N),

where
N (N) := N − 3 +

√
2N+2 + 5N2 − 18N + 21

is the larger root of the quadratic polynomial in n0 on the left hand side of (19). Therefore,
we can now assign to n0 its minimum value, namely,

(20) n0 = min {n > 5 odd : n > N (N)} =

{
dN (N)e if dN (N)e is odd

dN (N)e+ 1 otherwise.

Therefore, if we let

(21) ξn0 =
[
`1, . . . , `n0−1

2

, 0, 1, 2, u1, . . . , un0−5
2

]
,

where `1, . . . , `n0−1
2

, u1, . . . , un0−5
2

are chosen to satisfy

`1, . . . , `n0−1
2

, u1, . . . , un0−5
2

/∈ (0,max (APN−1))

and

xn0+1 = max (APN−1) , i.e., − S (ξn0) =
N − 1

2
n0 + 2N +N2 − 3N + 2,
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Figure 12. The orbit of the input set (22). The input set is shown in dark blue,
the generated pairs in purple, the intermediate iterates in light blue, and the iterate
from which the orbit stabilises in green.

then we have MnN−1+|APN | = MnN−1+|APN |+1 as the first two equal consecutive medians,
implying that

τ (ξn0) = nN−1 + |APN |+ 2

= n0 + 2N+1 + 4N − 2

∼ n0 +

(
2

N+2
2

)2

2

∼ n0 +
n0

2

2

∼ n0
2

2
,

proving the theorem.

For example, an initial set prescribed by the above proof whose orbit contains N = 4
generated arithmetic progressions has size n0 = 11, by (20). By (18), we obtain max (AP3) =
77
2 . Therefore, by (15), such an initial set is of the form

ξ11 = [`1, `2, `3, `4, `5, 0, 1, 2, u1, u2, u3] ,

where `1, `2, `3, `4, `5, u1, u2, u3 must be chosen to satisfy the conditions

`1, `2, `3, `4, `5, u1, u2, u3 /∈
(

0,
77

2

)
and − S (ξ11) =

77

2
.

Choosing u1 = u2 = u3 = 77
2 and `2 = `3 = `4 = `5 = 0, we obtain from the second condition

that

`1 = −77

2
−
(

4 · 0 + 0 + 1 + 2 + 3 · 77

2

)
= −157,

which satisfies the first condition, and hence

(22) ξ11 =

[
−157, 0, 0, 0, 0, 0, 1, 2,

77

2
,
77

2
,
77

2

]
.

The transit time of this set is 57 and its orbit is shown in figure 12.
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5. A height-type function

We have established our main result by considering sequences of initial sets of increasing
size and expressing the growth of the transit time as a function of the size of the initial set.

However, the available data for the original system
[
0, pq , 1

]
(figure 2) express the growth of

the transit time as a function of the denominator q of the initial condition. For the purpose of
comparison, in the main theorem we need to replace the size of the initial set with a quantity
which is comparable to q. Accordingly, we introduce a height-type function H as follows.

First, we define the height of a singleton rational set
[
p
q

]
, where q 6= 0 and gcd(p, q) = 1,

as

H
([

p

q

])
:=

{
|p| if q = 1

|p|+ |q| otherwise.

Then, the height of any rational set ξ is defined to be

H(ξ) := min

{ ∑
x∈aξ+b

H([x]) : a, b ∈ Q, a 6= 0

}
,

i.e., the minimum total height of the elements of a rational set which is affine-equivalent to ξ.

With this definition, we have H
([

0, pq , 1
])

= q for 0 < p < q, as easily verified. Hence for the

original system we observe that the growths of the average and maximum transit times with
the height of the initial set are algebraic with exponents α ≈ 0.42 and β ≈ 1.45, respectively
(figure 2).

We shall now use sets of the form (21) to construct a sequence of sets whose transit time
grows algebraically with the height with exponent lying between α and β, thereby providing
an efficient construction of initial sets with large transit times.

Given an odd integer N > 2, a set prescribed by the proof has the form (21), where

n0 = min
{
n > 5 odd : n > N − 3 +

√
2N+2 + 5N2 − 18N + 21

}
∼ 2

N
2

+1,

by (20). Choosing

u1 = · · · = un0−5
2

= m :=
N − 1

2
n0 + 2N +N2 − 3N + 2 ∼ 2N

and
`2 = · · · = `n0−1

2

= 0

gives the set
ξn0 =

[
`1, 0, . . . , 0︸ ︷︷ ︸

n0−3
2

, 0, 1, 2,m, . . . ,m︸ ︷︷ ︸
n0−5

2

]
,

where

`1 = −m− 3− n0 − 5

2
m ∼ −2

3
2
N+1,

having transit time

(23) τ (ξn0) ∼ n0
2

2
∼ 2N+1.
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Since both N and n0 are odd, then m, `1 ∈ Z, so

H (ξn0) 6
∑
x∈ξn0

H([x]) = |`1|+
n0 − 1

2
· 0 + 1 + 2 +

n0 − 5

2
·m

=

(
m+ 3 +

n0 − 5

2
·m
)

+ 3 +
n0 − 5

2
·m

= (n0 − 4)m+ 6 =: H+ (ξn0) .

On the other hand,
H (ξn0) > |m| =: H− (ξn0) .

We have
H− (ξn0) ∼ 2N and H+ (ξn0) ∼ 2 · 2

3
2
N .

Considering (23), we have

τ (ξn0) ∼ 2H− (ξn0) and τ (ξn0) ∼ 3
√

2
[
H+ (ξn0)

] 2
3 .

Thus, the growth of τ is exponential, the detailed behaviour depending on the value. We
note that the exponent of both upper and lower bounds lies between the empirical exponents
α and β mentioned in the introduction.

As an illustration, suppose we want to construct an initial set with transit time at least
1000. According to figure 2 (a), if we use the original system, we expect the height of the set

to be approximately
(

1000
e2.31

) 1
0.42 ≈ 56786. However, for N = 9, we have from part ii) of our

main theorem that the set

ξ55 = [−19703, 0, . . . , 0︸ ︷︷ ︸
26

, 0, 1, 2, 788, . . . , 788︸ ︷︷ ︸
25

]

has transit time 55 + 29+1 + 4 · 9− 2 = 1113. The height of this set is

H (ξ55) = H
([
−19703

788
, 0, . . . , 0︸ ︷︷ ︸

26

, 0,
1

788
,

1

394
, 1, . . . , 1︸ ︷︷ ︸

25

])
= 19703 + 788 + 1 + 788 + 1 + 394 + 25 · 1
= 21700.
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