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Abstract. We study the parameter space of a family of planar maps, which are linear
on each of the right and left half-planes. We consider the set of parameters for which
every orbit recurs to the boundary between half-planes. These parameters consist of
algebraic curves, determined by the symbolic dynamics of the itinerary that connects
boundary points. We study the algebraic and geometrical properties of these curves, in
relation with such a symbolic dynamics.

1. Introduction

Piecewise linear (affine) maps are maps defined on a partitioned phase space where a
different linear (affine) map acts on each region of the partition. Often this can be achieved
to maintain continuity of the map. Dissipative versions arise naturally in engineering and
physical models and the nature of the attractors in them and the possible bifurcations
have received considerable attention [4].

Less well-studied is the conservative case; in particular, regular orbits in piecewise linear
symplectic maps are not well understood. A much studied two-parameter family on the
plane is [3, 8, 9, 14–16]

(1) F(x, y) =

{
(ax− y, x) x > 0 ∨ (x = 0 ∧ y 6 0)

(bx− y, x) otherwise

where a and b are real parameters. (Our definition of F on the line x = 0 is a variant of
that found in the literature.) The map F can lay claim to being the normal form for a
piecewise linear map acting on the partition into the left and right half-planes [9].

The map F sends rays through the origin into themselves, and the ray dynamics is a
smooth circle map f. The purpose of this work is to study the symbolic dynamics of f
with respect to the above binary partition of the plane, extending the works [14, 15] on
the system (1), and complementing the works [9,24–26] on mode-locking and bifurcations
in piecewise-linear maps. This work is the first part of a planned broader study [23].

Each orbit of F corresponds to developing a product or word in the matrices A =
(
a −1
1 0

)
and B =

(
b −1
1 0

)
, following the symbol sequence of the dynamics between the left and

right-half planes. (We use roman fonts for the real parameters a,b and italic fonts for
the symbols a, b of the corresponding half-planes; the latter appear as letters in words or
indeterminates in algebraic expressions.) Relevant observables are the frequencies of the
two type of matrices in the developing word, which are orbit-dependent. In this sense, F
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Figure 1. Left: the parameter space of the map (1), with mode-locking regions
colour-coded by the escape rate (only the range a 6 b is shown). Right: some
orbits for the parameter pair (a,b) = (−1/3, 2/3), seemingly conjugate to an
irrational rotation with symbolic complexity K(n) = 2n.

generalises a model in condensed matter physics, the discrete Schrödinger equation on a
one-dimensional lattice (see, e.g., [22] and references therein). Here one propagates the
solution along the lattice by developing a matrix word in the aforementioned matrices
A and B (with a and b being physically relevant parameters) according to a two-letter
substitution rule which prescribes the asymptotic frequencies of A and B in the word. The
case of quasiperiodic words (e.g., the Fibonacci sequence) has received much attention.

Matrix words of the type described also arise naturally in the classical study of continued
fraction expansions in number theory where a and b are taken to be integers [19]. Nev-
ertheless, the theory of continuant polynomials which is used to study continued fractions
can equally well be applied to study the dynamics of F with a,b ∈ R [2, 10,19].

Our knowledge of parameter space of F is limited to four countable families of algebraic
curves C(a, b) = 0, where C is a polynomial with integer coefficients. The first two families
are known explicitly, while the other two are constructed using certain finite symbolic
codes, whose general form is still unavailable. They are:

i) An infinite family of line segments (together with their image under parameter
exchange1), where the rotation number of f is known [3,14].

ii) An infinite family of hyperbolae, invariant under parameter exchange, where the
map f is of finite order and the rotation number is constant [3, 14].

iii) A family of algebraic curves defined by a dynamical condition, for which the map
F is known to support invariant curves with rational or irrational rotation number,
consisting of finitely many arcs of conic sections glued together [15].

1Exchanging a and b in (1) leads to a conjugate system, so it suffice to study the case a 6 b.
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iv) A family of algebraic curves defined by a dynamical condition, bounding the mode-
locking regions [9, 24–26].

A central question regards the existence and properties of quasi-periodic orbits whose
closure are topological circles, special cases of which occur for parameters of type i) and iii).
General results are scarce. M. Herman’s work in the broader setting of the Froeschlé group
[11, Theorem VIII.5.1] implies that any map F having an irrational rotation number θ =
θ(a, b) with bounded partial quotients in its continued fraction expansion is topologically
conjugate to a rotation of the plane, and hence has invariant circles. This set of parameter
values has zero two-dimensional Lebesgue measure. The results of [15] on curves of type
iii) are complementary, as they regard one-dimensional sets of parameters (see below).
Numerical experiments suggest ubiquity of parameter pairs for which all orbits are dense
on non-smooth curves, as in figure 1, right.

The present work is devoted to the development of a theory of the curves of type iii),
which we call the critical curves in parameter space. They are defined by the condition
that an initial boundary ray (the positive or negative ordinate semi-axis in R2) be sent
by the map F to the opposite boundary ray in a prescribed number of iterations. If the
parameters a, b belong to critical curve, and if the rotation number of the corresponding
circle map f is irrational, then the phase space of F foliates into piecewise smooth invariant
curves, consisting of arcs of conic sections joined together [15, theorem 2.2]2.

We now summarise the contents and main results of this paper. In section 2 we provide
some background on the symbolic dynamics of rotations and on the circle map f. We
then give some preliminary results for the dynamics of F on a half-plane and its relation
to the parameter. In the following section we introduce the main object of study, the
critical curves, which correspond to the occurrence of Sturmian-type words in the symbolic
dynamics (see [21, section 6]). Using the theory of continuants, we determine some general
algebraic properties of these curves (propositions 5,7, section 3.1). We link the symbolic
dynamics to the time-reversal symmetry of the map F (theorem 6), and show that critical
curves have several disjoint branches, whose number is determined by the code. We
establish that only one branch —indeed, only a part of it— is relevant to the dynamics
of the map F (theorems 8 and 10), meaning that the code that defines the curve is the
symbolic dynamics of a segment of an actual orbit of the map F, with initial condition of
the appropriate boundary ray. Subsequently (section 3.2) we consider functions defined
over critical curves, and derive formulae for the Poisson brackets of two curves (theorem
9), for later use.

In section 4 we consider intersections of critical curves, which lead to periodic orbits.
We introduce the concept of intersection sequence, with which we classify the intersections
of a curve with curves of lower degree generated by sub-words (theorem 11). We construct
an associated geometrical object, called the polygonal of the curve, by means of which
we formulate sufficient conditions for the transversality of these intersections (theorem
14). We also formulate conditions under which intersections delimit the portion of a curve
which has dynamical significance.

2The authors of [15] do not introduce explicitly the notion of critical curve.
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In section 5 we consider the first generation of curves of type iii). These are obtained by
concatenating the symbolic words of two curves of type i), and then allowing for repetitions
of the concatenated word (theorem 18).

Identities of Chebyshev polynomials are collected in an appendix.

2. Background

2.1. Rotational words. For references for this section, see, e.g., [1, 21].

The rotational words are the symbolic dynamics of rotations with respect to a two-
element partition of the circle. A rotational orbit has the form xt = {θt + x0} for some
θ, x0 ∈ [0, 1), where {·} denotes the fractional part. Without loss of generality, we choose
the partition Ia = [0, ρ) and Ib = [ρ, 1), the subscript denoting the symbol associated to
each interval. Thus a rotational word is determined by a triple (θ, ρ, x0). Rotations are
invertible, so all rotational words can be extended to the left; the extension is unique,
apart from some notable special cases (see below).

If we denote by Ln the collection of all sub-words (or factors) of length n in an infinite
word W , then the complexity function of W is K(n) = |Ln|. An infinite word is eventually
periodic if and only if K(n) 6 n for some n, so we require K(n) > n + 1. For rotational
words, K(n) is (eventually) an affine function of n. The precise form of K depends on
whether or not the boundary points 0 and ρ of the partition are on the same doubly-
infinite orbit. If they are, we let ` be the transit time from one to the other; if they
aren’t, we let ` = ∞. Then, irrespective of the initial condition x0, the rotational word
has complexity [1, theorem 10]

(2) K(n) =

{
2n n 6 `

n+ ` n > `.

The case ` = 1 are the much studied Sturmian words [21, section 6]. If 1 < ` < ∞, we
call the word quasi-Sturmian (of length `), and free if ` =∞.

All irrational rotations are minimal (and indeed uniquely ergodic), and this implies that
for fixed irrational θ and arbitrary ρ, each factor of any rotational word occurs infinitely
often and with bounded time between successive occurrences, hence with a well-defined
frequency; the latter may be computed as the length of an interval [1]. The symbolic
language [the sequence (Ln)] does not depend on the initial condition x0 [21, p. 105], and
for our purpose the parameter space for rotations will be the unit square [0, 1)2. The
parameters θ and ρ will be referred to as the rotational parameters.

If the points 0 and ρ are on the same orbit, separated by ` iterations (` could be
negative), then `θ ≡ ρ (mod 1), that is, the quasi-Sturmian configurations for a given `
correspond to a finite collection of segments in rotational parameter space.

2.2. The circle map. Let f : [0, 1)→ [0, 1) be the circle map associated to (1), namely

(3) f(e2πix) =
F(e2πix)

‖F(e2πix)‖
e2πix ∼= (cos(2πx), sin(2πx)) ∈ R2.
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This is an orientation-preserving homeomorphism whose derivative is continuous and of
bounded variation [14, theorem 3.1]. Hence f has a well-defined rotation number θ =
θ(a, b). The latter is a continuous function of the parameters, and its range is the interval
[0, 1/2] [14, theorems 2.1 and 3.3]. From Denjoy theorem [12, p. 401], if θ is irrational
then f is topologically conjugate to a rotation by θ, which in turn determines the symbolic
language L, irrespective of the initial conditions.

We divide the domain of the circle map f into two intervals Ia and Ib, and associate to
an orbit a symbolic word W in the letters a and b, determined by the two branches of the
map F in (1). We denote by Wn the prefix of W of length n, and by |Wn|w the number
of times the finite word (factor) w appears in Wn. The rotation number θ(a, b) and the
density ρ(a,b) are defined as follows:

(4) θ(a,b) = lim
n→∞

1

n
|Wn(a,b)|ab, ρ(a, b) = lim

n→∞

1

2n

(
|W+

n (a,b)|a + |W−n (a, b)|a
)
,

where W is arbitrary and W± is the word of the orbit with initial condition (0,±1).

The above limits exist because they are frequencies of factors of rotational words. Since
every appearance of the factor ab corresponds to one loop around the origin, our definition
of rotation number is equivalent to the standard one for circle homeomorphisms [12, chap-
ter 11]; in particular, the rotation number is independent from the initial condition. This
also holds for the density, as long as the rotation number is irrational, from minimality of
irrational rotations (section 2.1). If the rotation number is rational, then the density may
depend on the initial condition; in our definition (4) the union of the orbits correspond-
ing to W± is invariant under time-reversal symmetry [because F(0,∓1) = (±1, 0)]. This
ensures that ρ(a, a) = 1/2 for all real a, so that ρ is continuous on the main diagonal in
parameter space.

We consider the level sets of the rotation number:

(5) Θ(x) = {(a, b) ∈ R2 | θ(a, b) = x} 0 6 x 6 1/2.

If x = p/q is rational, then Θ(p/q) will be called a resonance.3 A point (a,b) of a resonance
is a pinch-point if the set Θ(p/q) \ {(a,b)} is locally disconnected near (a,b). Note that
the density ρ is not necessarily continuous within a resonance, because the same rotation
number may be associated to more than one code. For instance, the periodic codes aabb
and abbb have the same rotation number 1/4, but distinct densities 1/2 and 1/4.

We now remove from the parameter space R2 of the circle map f the interior of the
resonances Θ(0) and Θ(1/2), given by

(6) Θ(1/2) = {(a,b) ∈ R2 | ab 6 4, a, b < 0}, Θ(0) = {(a,b) ∈ R2 | max(a,b) > 2}.
We obtain an infinite strip A, the region lying between the boundaries of Θ(0) and Θ(1/2).
(If we identify the points (−∞, ζ) and (ζ,−∞), for 0 6 ζ 6 2, then A becomes a compact
set —a topological annulus.)

A detailed investigation of parameter space outside resonances requires replacing origi-
nal parameters a,b with the rotational parameters θ, ρ, which are suited for an arithmetical
analysis of critical curves. This is the subject of a forthcoming investigation [23].

3We prefer this term to the customary terms tongue or sausage.
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2.3. Basic dynamical properties. The area-preserving map F of (1) has a common
form of a reversible map, i.e., a map conjugate to its inverse via an involution, specifically

(7) F−1 = R ◦ F ◦ R, R : (x, y) 7→ (y, x).

Reversible maps are well-studied [17] and an equivalent definition is that they can be
written as the composition of two involutions (e.g., F is the composition of F ◦R and R).
An orbit of F is called symmetric if it is R-invariant and asymmetric otherwise, in which
case it forms an asymmetric pair with its R-image. A symmetric orbit must contain one
or two points from the symmetry lines

Fix(R) ∪ Fix(F ◦ R),

and is periodic if and only if it contains two points, where

(8) Fix(R) := {(x, x) : x ∈ R}, F ix(F ◦ R) := {(a

2
y, y) : y > 0} ∪ {(b

2
y, y) : y 6 0}.

As also realised in [14], a special role in the dynamics of F is played by the positive and
negative ordinate semi-axes and we define:

(9) L+ := {(0, y) : y > 0}, L− := {(0,−y) : y > 0}.
We use the terminology L+-orbit of F for an orbit that contains L+ and likewise an L−

-orbit. An orbit that contains neither L+ or L− will be called a non-L± orbit. Because of
the scale invariance of F, it suffices to study the orbit of (0, 1) to find an L+ orbit and the
orbit of (0,−1) to find an L− orbit. As a result, we will often identify L+, respectively
L−, with (0, 1), respectively (0,−1). More generally, the scale invariance of F allows us to
talk interchangeably about an orbit of points in the plane and the associated orbit of rays
where each point is embedded into its position vector from the origin.

An orbit of F is typically made from patching together orbit segments that occupy the
domain of Ma =

(
a −1
1 0

)
in the right half plane with orbit segments that switch to occupy

the domain of Mb in the left half plane, before repeating this alternating behaviour. For
reference, we denote these domains:
(10)

dom(Ma) :=
{

(x, y) ∈ R2 : −π
2
6 arctan2(y, x) <

π

2

}
, dom(Mb) := R2 \ dom(Ma).

In proposition 1 below, we study the dynamics within a single orbit segment in the right
half plane (for ray counting in that result, note that L− ∈ dom(Ma) but L+ ∈ dom(Mb)).

Define the eigenvalues of Ma by

(11) λ = λ± =
a

2
±

√(
a

2

)2

− 1, λ+ λ− = 1.

When |a| 6 2, the elliptic case, we shall make use of the quantity

(12) ζj := 2 cos(π/j), j = 1, 2, . . . .

When |a| > 2, the hyperbolic case, the real eigenvectors associated to λ± are denoted V±
and have slope λ∓. From (69) in the appendix, the powers of Ma can be expressed in
terms of polynomials Un(a) in a of degree n− 1, with Un(a) = Ūn−1(a/2), where Ūn is the
nth Chebyshev polynomial of the second kind. The polynomials Un satisfy

(13) U−1(a) = −1, U0(a) = 0, Un+1(a) = aUn(a)− Un−1(a), n > 0.
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From (69), the forward images of (1, 0) = Ma(0,−1) by Mj
a for j > 0, as long as they

remain in dom(Ma), are the rays

(14) (Uj+1(a), Uj(a)) ∈ dom(Ma), with slope mj := Uj(a)/Uj+1(a).

Likewise, by reversibility, the images of R (1, 0) = (0, 1) by M−ja are the rays

(15) rj(a) := (Uj(a), Uj+1(a)) ∈ dom(Ma), with slope 1/mj .

The Mobius transformation that relates the slope m of an initial ray in dom(Ma) to the
slope µa(m) of its image is:

(16) m 7→ µa(m) =
1

a−m
, m ∈ R ∪∞.

It inherits a reversing symmetry from R, given by

(17) m 7→ 1

m
.

We also note that order preservation of the induced circle map corresponding to Ma (or
Mb) means that if one ray is obtained from another by an anti-clockwise rotation then the
same is true of their images. We use the anti-clockwise direction to order rays in the orbit
segment from ‘first’ to ‘last’.

Proposition 1. Consider the dynamics of Ma =
(
a −1
1 0

)
in dom(Ma) of (10).

i) For all a > 2, all rays between L− and the contracting eigenvector ray V− ∩
dom(Ma) with slope λ+ > 1 converge onto the expanding eigenvector ray V+ ∩
dom(Ma) with slope λ− < 1 —the points on these rays escape to infinity along this
direction; the rays between V− ∩ dom(Ma) and L+ eventually escape to dom(Mb).

ii) For any κ > 2, we have a = ζκ of (12) if and only if there is a segment of a
symmetric orbit that goes from L− to L+ with κ rays in dom(Ma) and Ma

κ = −Id.
iii) When a ∈ (ζκ−1, ζκ), κ > 2, the possible orbit segments of Ma in dom(Ma) comprise

a sequence of rays rotating anti-clockwise from the fourth quadrant into the first
quadrant and eventually escaping to the left half-plane. The possibilities are:

a) a L+-orbit segment with κ−1 rays and first ray (Uκ−1(a), Uκ(a)) in the interior
of the fourth quadrant;

b) a L−-orbit segment with κ rays comprising L− = (0,−1) and (1, 0) and the
R-image of the L+ = (0, 1)-orbit segment contained within the first quadrant.

c) a non-L± orbit segment with κ − 1 rays if the first ray has slope m with
Uκ(a)/Uκ−1(a) < m < 0 and κ rays if the first ray has slope m with m <
Uκ(a)/Uκ−1(a) < 0.

iv) The rays rj(a) of (15) that delineate the sectors in item iii a) rotate anti-clockwise
as a increases.

Proof. Firstly, we make a general comment about orbit segments. Since (0,−1) maps
anti-clockwise to (1, 0), independent of a, any orbit segment in dom(Ma) not starting
parallel to (0,−1) must have a single ray, its first, in the interior of the fourth quadrant
(which is the image under Mb of the last ray in the preceding orbit segment). This first ray
with positive x-coordinate has an image with positive y-coordinate since y′ = x in F. On
the other hand, the image of (0, 1) by M−1a is (1, a) and the last ray of any orbit segment of
Ma that escapes to the left half plane must be the single ray of the orbit segment located
in the wedge sector determined by (1, a) and L+.
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We prove i). When a > 2, Uj+1(a) > Uj(a) > j for j > 1 so (14) and order preservation
implies the forward orbit of (1, 0), and hence that of any initial ray in the fourth quadrant,
is confined thereafter to the first quadrant. Analysis of (16) confirms that the fixed point
at m− = λ− of (11) is attracting on [−∞, λ+). The fixed point at m+ = λ+ is repelling
and the interval (λ+,∞) eventually is mapped to m < 0 (which in this case corresponds
to rays moving to the second quadrant). Of course, the fixed points m± = λ± correspond
to the eigenvectors of Ma.

We prove ii). For M−ja (0, 1) = (Uj(a), Uj+1(a)), requiring Uj(a) > 0 for 1 6 j < κ and
Uκ(a) = 0 produces κ−1 rays clockwise in the first quadrant, the last one parallel to (1, 0).
Since the pre-image of (1, 0) is (0,−1), we obtain κ rays in total. For κ = 2, the condition
on a for this orbit is that U2(a) = a = 0. For κ > 2, the condition Uj(a) > 0 for 1 6 j < κ
and Uκ(a) = 0 finds the right-most root of Uκ, namely a = ζκ. This follows from the
well known roots of the Chebyshev polynomials Ūn, as does the fact that Uκ−1(ζκ) = 1.
Thus the (κ− 1)th ray is exactly (1, 0), not just parallel to it. Substituting Uκ−1(ζκ) = 1,
Uκ(ζκ) = 0 and Uκ+1(ζκ) = −1 into (69) gives Ma

κ = −Id. Since (1, 0) = F(0,−1) and
(0, 1) are mapped to one another by R, the finite orbit segment from L− to L+ is part of
a symmetric orbit.

iii) For an L+-orbit segment of κ − 1 rays, we require from (15) that Uj(a) > 0 for
1 6 j < κ and Uκ(a) < 0, whence a ∈ (ζκ−1, ζκ), giving part a). These κ − 1 rays,
together with L+, delineate κ sectors in dom(Ma). Taking any ray internal to the first
sector bounded by L− and (Uκ−1(a), Uκ(a)) and iterating gives an orbit segment of κ rays
in dom(Ma), with one ray in each sector by order preservation. The first ray has slope
m : m < Uκ(a)/Uκ−1(a) < 0. Taking any ray internal to the second sector starting at
(Uκ−1(a), Uκ(a)) that is also in the fourth quadrant, with slope m : Uκ(a)/Uκ−1(a) < m <
0, gives an orbit segment of κ − 1 rays. This proves part c). A L− orbit segment of κ
rays begins with L− and then a ray parallel to (1, 0) = R (0, 1). From (14) and (15), the
forward orbit of (1, 0) contained in the first quadrant is the R-image of the backwards orbit
of (0, 1) contained in the first quadrant, which from b) comprises κ−1 rays including now
(0, 1) itself.

We prove iv). The inverse of (16) is m 7→ µa
−1(m) = a− 1

m for m ∈ R∪∞, and it gives

the slope m(F−1z) = µ−1a (m) in terms of the slope m = m(z) of a ray z ∈ R2. We apply
this to the rays rj(a) of (15) that delineate the sectors in proposition 1 iii) a). Defining
rj(a) := m(rj(a)), we have

rj+1(a) = a− 1

rj(a)
=⇒ r

′
j+1 = 1 +

r
′
j

rj2
,

where the prime denotes differentiation with respect to a. Since r0 = ∞, r′0 = 0 and

r1 = a, r
′
1 = 1, then by induction, we see r

′
j > 1 for j > 1. Hence as a increases, rj(a)

moves anti-clockwise.

There is the obvious version of the above for Mb.

This first dynamical analysis allows some preliminary bounds on rotation number and
density in parameter space.
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Cb2

Cb3

Cb4

Ca2 Ca3 Ca4

bb

bbb

bbbb

aa aaa

(1/4, 1/2) (1/5, 3/5)

(1/5, 2/5)

(1/5, 1/2)

(1/6, 1/2)

(1/6, 1/3) (1/7, 3/7)

Figure 2. Partition of the first quadrant [0, 2]2 of the parameter space A into
rotational domains, determined by the critical curves of proposition 3. The bound-
ary of Θ(0) is represented in blue, and positive and negative critical words in red.
The rational pairs near highlighted points represent the value of rotational param-
eters at those points.

Proposition 2. Let κ > 2. If a ∈ (ζκ−1, ζκ], then the number of rays in each orbit segment
in dom(Ma) is κ− 1 or κ. If b ∈ (ζ`−1, ζ`], ` > 2, the analogous result holds in dom(Mb)
and in addition:

(i) θ(a, b) ∈
[ 1

κ+ `
,

1

κ+ `− 2

]
; (ii) ρ(a,b) ∈

[ κ− 1

κ+ `− 1
,

κ

κ+ `− 1

]
.

Proof. The statement on the number of rays versus parameter value follows directly
from the list of possibilities in proposition 1. If we use N i

a = N i
a(a,b), i ∈ Z, to label

the bi-infinite sequence of the number of rays in dom(Ma) indexed by revolution i, and
similarly for N i

b , then

θ(a,b) = lim
k→∞

2k + 1∑i=k
i=−kN

i
a +N i

b

,

ρ(a,b) = lim
k→∞

∑i=k
i=−kN

i
a∑i=k

i=−kN
i
a +N i

b

= lim
k→∞

(
1 +

∑i=k
i=−kN

i
b∑i=k

i=−kN
i
a

)−1
.

Using the bounds (2k + 1) (κ − 1) 6
∑i=k

i=−kN
i
a 6 (2k + 1)κ etc., gives the results. Also

we observe

ρ(a,b) = K(a) θ(a,b),

where K(a) := limk→∞

∑i=k
i=−k N

i
a

2k+1 and κ− 1 6 K 6 κ.
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3. Critical curves

A boundary parameter is a pair (a, b) ∈ A for which there is an F-orbit (a boundary
orbit) that contains two (not necessarily distinct) boundary rays, namely the positive and
negative ordinate semi-axes L+ and L− of (9). Such a dynamical condition is accompanied
by a finite boundary word w, which encodes the itinerary between two boundary rays;
this part of the boundary orbit will be called a boundary segment. Because the two
components of the map F coincide on boundary rays, changing any letter that corresponds
to a boundary ray has no effect on the orbit. (This always applies to the first letter of
a boundary word.) The resulting ambiguity defines an equivalence relation on words,
whereby we write w ∼ w′ to indicate that w′ is obtained from w by any change in the
symbols allocated to a boundary ray. A boundary word which is equivalent, but not equal,
to the symbolic dynamics of the map F is said to be improper. These words appear at
the intersections of curves (section 4).

The rank ι of a boundary word w is given by ι = 1 + |w|ab + |w|ba [cf. definition (4)].
If w encodes the symbolic dynamics of F, then ι is the number of half-loops that occur in
the transit between the initial and final boundary rays. A boundary word begins and ends
with the same symbol in the odd-rank cases (L+ 7→ L− or L− 7→ L+) and with distinct
symbols in the even-rank case (L+ 7→ L+ or L− 7→ L−). The sign of a boundary word
is positive if the word begins with the symbol a (the orbit starts from L−), and negative
otherwise.

If the rank of w is even, then the critical curve is the parametric locus of a periodic
orbit having (at least) one point on the partition boundary. These are the periodic β-
orbits in [9, section 3.1], in which case the length and rank of the boundary word are,
respectively, the denominator and twice the numerator of the rotation number. If an even
rank curve supports both positive and negative boundary segments, then we call it an
axis (of a resonance).

If the rank of a word w is odd, then the set of parameters for which w is a boundary
word will be called a critical curve, examples of which are given in [15, examples 4.1–3]
(see proposition 3 below). The associated boundary orbit of F will be called a critical
orbit in this case.

We see that the orbits of proposition 1 ii) are critical orbits of rank 1 with critical curve
a = ζκ and boundary word aκ and this is true independently of the value of b and the
dynamics in dom(Mb). This is also the family i) mentioned in the introduction, which will
be used in section 5. The following result extends example 3.2 in [14] (cf. also propositions
1 and 2 of the previous section):

Proposition 3. For κ = 2, 3, . . ., the set

(18) Caκ := {(ζκ, b) : b ∈ R},
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with ζκ of (12) has rotational parameters

(19) ρ(ζκ,b) = κθ(ζκ,b), θ(ζκ,b) =


0 b > 2

arccos(b/2)

κ arccos(b/2) + π
|b| 6 2

1

κ+ 1
b < −2.

Exchanging a and b yields the twin sets Cb` := {(a, ζ`) : a ∈ R}, with the corresponding
formula for the rotation number and ρ(a, ζ`) = 1− ρ(ζ`, a).

Proof. The rotation number in (19) for |b| 6 2 follows from example 3.2 and theorem
2.1 in [14]. The value of θ for b > 2 follows from (the b-part of) proposition 1 and the
proof of proposition 2. If b 6 −2, then by (19) we have θ(ζκ,−2) = 1/(κ+ 1), and
by [14, theorem 2.1], θ(a, b) is nonincreasing in b, so that θ(ζκ, b) > 1/(κ+ 1). However,
(ii) of the same theorem implies 0 6 θ(ζκ, b) 6 1/(κ + 1) for any b, and thus we have
θ(ζκ, b) = 1/(κ+ 1) for b 6 −2.

The density in (19) follows from K(a) defined in the proof of proposition 2, noting from
proposition 1 ii) that for a = ζκ, we have N i

a = κ for all i, whence K(ζκ) = κ. Exchanging
a and b yields the same analysis; the obvious modification for the density results from the
congruence ρ ≡ κθ (mod 1) with negative κ.

Note that in the interval |b| 6 2 (|a| 6 2) these components do not intersect the interior
of any resonance, by virtue of the fact that the rotation number is nowhere constant. The
points (ζκ,±2) of Caκ lie on the boundary of the resonances with rotation number 0 and
1/(κ+ 1).

The critical curves are our main object of study, and the closure of the set of boundary
parameters which belong to some critical curve will be called the critical set Ξ ⊂ A.
The simplest components of the critical set are those described in proposition 3. Indeed,
for κ > 2, the positive word aκ = a · · · a︸ ︷︷ ︸

κ

is critical of rank one, with components Caκ .

Likewise, b` is negative of rank one, with component Cb` .

For later use, we collect the following which are known or easily verified:

Lemma 4. For the map F = Fab of (1) and its reversing symmetry R of (7), we have:

i) From reversibility, the R-image of the forward (backward) orbit of (0, y) is the
backward (forward) orbit of R (0, y) = (y, 0) = F(0,−y), i.e.,

F−k+1 (0,−y) = R Fk (0, y), k ∈ Z, y ∈ R+.

ii) A critical orbit of odd rank exists if and only if (0, 1) and R (0, 1) = (1, 0) =
F(0,−1) are in the same orbit. Since the point (0, 1) and its image under R are
in the same orbit, the critical orbit is symmetric.

iii) With T : (x, y) 7→ (−x,−y), we have

Fab = T ◦ Fba ◦ T−1.
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In particular, it suffices to study critical orbits where (0,−1) goes to (0, 1) in
forward time as those from (0, 1) to (0,−1) for Fab map to the former for Fba.

iv) There can be no critical orbit (of rank > 1) from (0,−1) to (0, 1) if a > 2 (b > 2).
v) We have F(0,±1) = (∓1, 0) together with F(1, 0) = (a, 1), F(−1, 0) = (−b,−1)

and F−1(0, 1) = (1, a),F−1(0,−1) = (−1,−b). Additionally:
(a) each orbit segment in dom(Ma) (dom(Mb)) only has at most one point in the
interior of the fourth (second) quadrant, with its image in the first or second (third
or fourth) quadrant;
(b) if a, b ∈ (−2, 2), and if an orbit segment has a point P in the interior of the
first (third) quadrant, then some image Fj P with j ≥ 1 is in the second (fourth)
quadrant and some pre-image F−k P with k ≥ 1 is in the fourth (second) quadrant.

Proof. Property i) is a standard result for reversible maps [17]. Property ii) is from
[14, theorem 3.4]. Property iii) is from [14, equation (2.4)]. Property iv) follows from
Proposition 1 i) and its corresponding version for Mb. Property v) follows from F being
order preserving and F : (x, y) 7→ (x′, y′) having y′ = x and F−1 : (x′, y′) 7→ (x, y) having
x = y′.

3.1. Algebraic properties. Requiring that an orbit contain two boundary rays leads
to algebraic curves over Q. We introduce the necessary formalism, and establish some
properties of these curves.

Let

(20) Mx =

(
x −1
1 0

)
where x is an indeterminate and consider the finite word

w = w0w1 · · ·wt−1,
where we regard, for now, each letter of the word w as an indeterminate (in the case of
F, we will later specialise to wi ∈ {a, b}). We form a product of matrices of type (20) as
follows:

(21) M∅ = Id, M[w] = Mwt−1Mwt−2 · · ·Mw0 ,

where ∅ denotes the empty word.

The entries of M[w] are polynomials in the indeterminates w0, w1 · · · , wt−1. Define the
recursive sequence of polynomials Qt = Qt(w1, . . . , wt−1) ∈ Z[w0, w1, . . . , wt−1] by the
three-term recurrence:

(22) Q−1 = −1 Q0 = 0 Qt+1 = wtQt −Qt−1 t > 0.

Hence

Q1 = 1,

Q2(w1) = w1,

Q3(w1, w2) = w1w2 − 1,

Q4(w1, w2, w3) = w1w2w3 − w1 − w3,

Q5(w1, w2, w3, w4) = w1w2w3w4 − w1w4 − w3w4 − w1w2 + 1.
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Alternatively, we can use the tridiagonal determinant representation:

(23) Qt(w1, . . . , wt−1) :=

∣∣∣∣∣∣∣∣∣∣∣∣

w1 1 0 · · · 0

1 w2 1
...

0
. . .

. . .
. . . 0

... 1 wt−2 1
0 · · · 0 1 wt−1

∣∣∣∣∣∣∣∣∣∣∣∣
, t ≥ 2,

with the recurrence relation (22) following by expanding the determinant along the last
row. Note we can also run the recurrence (22) backwards using indeterminates w−i to
find:

(24) Q−t = −Qt(wi 7→ w−i) t > 0.

With Qt defined, it follows by induction:

(25) M[w1···wt−1] =

(
Qt(w1, . . . , wt−1) −Qt−1(w2, . . . , wt−1)
Qt−1(w1, . . . , wt−2) −Qt−2(w2, . . . , wt−2)

)
,

and

(26) M[w0···wt−1] = M[w1···wt−1]M[w0] =

(
w0Qt −Qt−1 −Qt
w0Qt−1 −Qt−2 −Qt−1

)
t > 1.

The above results follow from the theory of continuants (or continuant polynomials), a
name given to the tridiagonal determinant (23). Continuants and their properties were
studied by Euler [10, Section 6.7] in connection with generalised continued fractions in-
volving arbitrary real (or complex) numbers instead of integers, see proposition 5 i) below.
The associated three-term recurrence for Euler’s original continuant is for the polynomial
sequence qt satisfying q−1 = −1, q0 = 0 and qt+1 = wtqt + qt−1. The polynomial Qt of
(22) belongs to a class of generalisations of the classic continuant, variously called signed
continuant polynomials or generalised Chebyshev polynomials, which have arisen in the
study of cluster algebras and frieze patterns [2,19]. The relationship between Qt and qt is
Qt(w1, . . . , wt−1) = (−i)t−1 qt(i w1, . . . , i wt−1) with i =

√
−1.

It follows from Euler that Qt can be generated as the sum of the product w1w2 . . . wt−1,
its leading term, together with all possible ways of writing the leading term again but
striking out adjacent product pairs wiwi+1 and replacing such a pair with −1 (e.g., the
four non-leading terms of Q5 above are obtained by striking out, respectively, w2w3, w1w2,
w3w4 and the two pairs w1w2 and w3w4). Note that from (22) and (13),

(27) Qn+1(x, x, . . . x) = Un+1(x) = Ūn(x/2),

where Ūn are the Chebyshev polynomials of the second kind —see the Appendix.

We shall need the following properties of continuants, found in references [10, Chapter
6.7] [19, Section 5.1], [2, Section 2.2]: [2, 10,19],

Proposition 5 (Continuant Polynomials). For all t > 1, indeterminates w1, . . . , wt−1 ∈ R
and integers k, l > −1, we have
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i)
Qt(w1, . . . , wt−1)

Qt−1(w2, . . . , wt−1)
= w1 −

1

w2 −
1

. . . − 1

wt−1
ii) Qt(w1, . . . , wt−2, wt−1) = Qt(wt−1, wt−2, . . . , w1)
iii) Qk+l+1(w1, . . . , wk+l) =

Qk+1(w1, . . . , wk)Ql+1(wk+1, . . . , wk+l)−Qk(w1, . . . , wk−1)Ql(wk+2, . . . , wk+l).

We now specialise to the case of odd rank, for which the structure of words and curves
is constrained by the reversibility of the map. The reduced word w of w is defined as
w = w1 · · ·wn−1 (again reversibility dictates considering to drop the first letter w0 – see
below). We say that w is a palindrome if

wi = wn−i i = 1, . . . , n− 1.

For F, the structure of a (palindromic) reduced boundary word of odd rank can also be
encoded by the (palindromic) integer exponent sequence (ik) of odd length 2m− 1, using
ik ∈ Z+, 1 6 k 6 m, that we call its block sequence, e.g.,

(28) w = ai1 bi2 ai3 . . . bim−1aim bim−1 . . . ai3 bi2 ai1 .

In this form, the rank is now obvious, being 2m− 1, whereas

(29) im + 2
m−1∑
k=1

ik = n− 1.

We take the convention that ik, k odd, counts powers of a if the associated word is positive
as in (28) (recall this means the word begins with a) and powers of b if the word is negative.
We see for a positive palindromic word that the middle block comprises powers of a when
m is odd and powers of b when m is even. We recall from proposition 2 that necessarily:

(30) a ∈ (ζκ−1, ζκ) =⇒ ik ∈ {κ− 1, κ}, b ∈ (ζ`−1, ζ`) =⇒ ik ∈ {`− 1, `}.

The significance of palindromic words to boundary curves of the map F is established
by the following result (it suffices to prove the case of a positive word noting ii) and iii)
of lemma 4).

Theorem 6. Consider a non-periodic critical orbit of F that contains (0,−1) and (0, 1)
and the associated positive boundary word w of length n that encodes the itinerary between
them. We have:

i) The reduced boundary word of rank 2m− 1 is a palindrome (28) of 2m− 1 blocks
(equivalently its block sequence is a palindromic (2m−1)-tuple of positive integers)

ii) The integer n is odd and im is even if and only if the boundary segment intersects
Fix(R) once in dom(Ma) (dom(Mb)), whence m is odd (even).

iii) The integer n is even and im is odd if and only if the boundary segment intersects
Fix(F ◦ R) once. The intersection is in dom(Ma) (dom(Mb)) if im = 1 and m is
even (odd) or if im > 1 and m is odd (even).

Proof. i). From reversibility, for arbitrary z ∈ R2, we have z′ = F(z) ⇐⇒ Rz =
F(Rz′). We claim the symbol sequence of the F-orbit leaving the point z 6= (0,±1),
developing to the right, is the same as the symbol sequence for the F-orbit arriving to Rz,
developing to the left. To see this, note the first symbol for the former is determined by z
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and the first symbol for the latter is determined by Rz′ and we claim that these symbols are
the same. From proposition 4 v), we have that if z is in the first or fourth quadrant, hence
encoded with symbol a for its forward image, then z′ is in the first or second quadrant,
whence Rz′ is in the first or fourth quadrant, and Rz′ is encoded similarly to z. A similar
result is true for z in the second or third quadrant and the symbol b. The argument is then
iterated, next with z′ and RF(z′). If we take a critical orbit with z = (1, 0) = F(0,−1), we
see the finite orbit connecting z and Rz = (0, 1) must have a palindromic symbol sequence,
i.e., the reduced word is a palindrome as in (28).

We prove ii). We know a critical orbit is symmetric from lemma 4. In general [17], for
any G that acts as a reversor of a reversible map L, so L−1 = G−1 ◦ L ◦ G, an orbit is
G-invariant if and only if Gz = Lkzz with kz ∈ Z for each point z ∈ R2 of the orbit. The
latter is true if and only if it is true for one point. Then either:
(a) GLjz z = Ljz z if kz = 2jz, i.e., Ljz z is fixed by G ; or
(b) LGLjz+1z = Ljz+1z if kz = 2 jz + 1, i.e., Ljz+1z is fixed by LG. If a symmetric orbit
is not periodic, it contains one point fixed by G or one point fixed by LG.

We are interested in L = F and G = R and we can take the point z = (1, 0) and
kz = n − 1. If n is odd so kz is even, we have case (a). Hence the forward orbit of the

midway point Fkz/2 (1, 0) ∈ Fix(R) is the reflection by R of its backwards orbit and the
slope of the rays in the forward and backwards orbit are reciprocals of each other from (17).
The involution R preserves the first and third quadrants and interchanges the second and
the fourth. If m > 1 is even (odd), the middle block in (28) is built from the letter b (the
letter a) and the number of points im of this orbit segment in dom(Mb) (dom(Ma)) must

be even. It comprises Fkz/2 (1, 0) on the line y = x and pairs of its forward and backward
iterates in the interior of the third (first) quadrant, plus the necessary additional point in
the second (fourth) quadrant guaranteed from lemma 4. If m = 1, we have only a single
letter in the word and then im in the reduced word is even (and the power is odd in the
full word, cf. proposition 1). Hence im is even as claimed, which can also be seen from
(29).

We prove iii). Now consider the case (b) above, i.e., n is even so kz is odd and q =
Fjz+1 (1, 0) ∈ Fix(FR). For y > 0, the involution FR : x′ = −x+ay, y′ = y is a horizontal
reflection about the point a

2 y; for y < 0, it is a horizontal reflection about the point b
2 y.

We have Fj q = Fj (FR q) = (FR)(F−j q), so the forward and backward iterates of q under
F at corresponding times in the upper half-plane and in the lower half-plane must be pairs
under these reflections. As an example, suppose q ∈ dom(Ma) in the first quadrant. This
means the single ray in the second quadrant when Frq first enters it (cf. lemma 4) must
force the iterates of q in the first quadrant to have r − 1 rays to the left of x = a

2 y in
forwards time, r > 1, and r rays to the right in backward time. Counting q itself and the
single ray F−(r+1) q in the fourth quadrant gives 2r+1 for the number im of the letter a in
the middle block, whence im is odd. Similar reasoning applies for the other possibilities.

This result leads us to study continuant polynomials for palindromic words (interest-
ingly, palindromic continuants were used in Smith’s 1855 proof of the Fermat two-square
theorem [6]). For generality, we again let w = w0 · · ·wn−1 be a word in n letters (not just
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two letters a and b). Let

(31) k = bn/2c.

and build the particular polynomials in Z[w0, . . . , wn−1] from (22):

(32) Cw :=

{
Qk+1 −Qk n odd

Qk+1 −Qk−1 n even
C̃w :=

{
Qk+1 +Qk n odd

Qk n even.

For completeness, if the rank of w is even, we let Cw = Qn and C̃w = 1.

The following result collects some algebraic properties of the Qt polynomials for palin-
dromic words in any alphabet.

Proposition 7. If w1 · · ·wn−1 is a palindrome (in any alphabet), then the following holds
for the polynomials Qt of (22) with t = 0, . . . , n (noting also (24) for (ii)):

i) Qn = CwC̃w(33)

ii) Qn−t −Qt = Cw ×

{
Qt−k+1(wk = −1, wk+1, . . . , wt−1) n odd

−Qt−k(wk+1, . . . , wt−1) n even.
(34)

Proof. i) From proposition 5 ii) and iii) with l = t− 1, k = n− t and the palindromic
word, we have for t = 1, . . . , n− 1:

. Qn(w1, . . . , wn−1) =

Qn−t+1(w1, . . . , wn−t)Qt(w1, . . . , wt−1)−Qn−t(w1, . . . , wn−t−1)Qt−1(w1, . . . , wt−2).

(35)

For odd n = 2k + 1, we take t = k + 1, to obtain Qn = Q2
k+1 − Q2

k = CwC̃w. For even

n = 2k, we take t = k = n− t, giving Qn = Qk+1Qk −QkQk−1 = CwC̃w.

ii) We prove the result by induction, in the first instance for t > k. Consider the
polynomial At = Qn−t −Qt. If n = 2k + 1, from (32) we find:

Ak = Qk+1 −Qk = Cw = CwQ1 Ak+1 = Qk −Qk+1 = −Cw = CwQ2(wk = −1).

If n = 2k, then

Ak = Qk −Qk = 0 = CwQ0 Ak+1 = Qk−1 −Qk+1 = −Cw = Cw (−Q1).

The above data serves as the base case for induction. Assume that (34) holds for all i in
the range k 6 i 6 t, for some t > k + 1. Then

At+1 = Qn−(t+1) −Qt+1 = wn−tQn−t −Qn−(t−1) − wtQt +Qt−1

= wt (Qn−t −Qt)− (Qn−(t−1) −Qt−1) = Cw (wtSt − St−1) = Cw St+1,

where St denotes the particular solutions in (34) for the respective cases of n even and
n odd, which obviously satisfy St+1 = wtSt − St−1. This completes the induction for the
range t > k. To see that (34) holds also for 0 6 t < k, note that both sides become their
negatives under t 7→ n− t, using (24) on the right hand side.

We now apply the above results to the dynamics of F. Let w = w0 · · ·wn−1 be a
boundary word – necessarily n > 2 for a boundary word since one matrix of the form (20)
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cannot map a boundary ray to a boundary ray. Let x−1 = −sign(w), x0 = 0, . . . , xn be
the corresponding orbit segment. From the equation(

xt
xt−1

)
= M[w0···wt−1]

(
0

−sign(w)

)
and (26), we obtain

xt = sign(w)Qt(w1, . . . , wt−1), t > 1.

An equation for the boundary curve with word w is obtained by requiring that xn = 0:

(36) Qn(a, b) = 0.

This equation stores redundant information. It expresses the fact that the image of one
boundary ray under the matrix product M[w] is another boundary ray, and such an action
may be realised without any reference to the symbolic dynamics of the map F. As a result,
the curve

(37) Qn = {(a, b) ∈ R2 : Qn(a,b) = 0}
has several branches, as we shall see below. A parameter pair c = (a, b) for which w is
equivalent4 to the symbolic word of a boundary segment of F will be called a legal point
of the curve, and a legal branch of the curve is one containing legal points. If a point
is not legal, then it may happen that the rank of the word does not correspond to the
number of half-turns performed by the orbit segment. We call the latter the orbital rank
of the point c.

Theorem 8. Let Qn be the curve (37), with reduced word w = w1 · · ·wn−1, n > 2. Then

i) Qn has n−1 disjoint branches, of which precisely one is legal. On the legal branch,
rank and orbital rank coincide, and vice-versa.

ii) If the rank of w is greater than 1, then each branch is represented by a decreasing
function b = b(a).

iii) Qn has n − 1 asymptotes, |w|b of which horizontal and |w|a vertical, including
multiplicities.

Proof. We prove i). From (27), we see that for a = b we have Qn(a, a) = Ūn−1(a/2).
Since the latter Chebyshev polynomial has n−1 distinct real roots, the curve (37) intersects
the line a = b in n− 1 distinct points, which are

(38) a = b = ζn,j = 2 cos

(
πj

n

)
, j = 1, . . . , n− 1.

[The number ζn,1 above corresponds to ζn in (12).] Over that line, we have M[w] = Mn
a ,

and as a decreases from 2 to −2, the rotation number of Ma increases monotonically from
0 to 1/2. At the value a = ζn,j the image of a boundary ray will reach a boundary ray
after j half-turns, and therefore the orbit of Ma will have the correct rank precisely for
j = ι.

Now prolong each branch starting from the corresponding point (38). Since the pro-
longation preserves the initial and final rays, as well as the orbital rank, distinct branches
cannot intersect. Thus the boundary curve has a unique legal branch, namely that where
rank and orbital rank coincide, which the branch containing the point a = b = ζ|w|,ι(w).
The proof of i) is complete.

4In the sense mentioned at the beginning of section 3.
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We prove ii). Let c = (a, b) be a (finite) point on Qn. We consider the M[w](c)-orbit of
the appropriate ray L1 = (±1, 0), the sign agreeing with that of w (the notation M[w](c)
refers to putting the specified parameter values c = (a,b) into the matrix entries of (25)).
We don’t require c to be legal, so the word w may be unrelated to the symbolic trajectory
of the orbit of F. Since the rank of w is greater than 1, the orbit segment of w will have
at least one non-boundary ray acted upon by each matrix Ma and Mb, where Mx is given
in (20).

One verifies that for any ray L and parameters ξ and ε, the ray Mξ+ε L is obtained
from Mξ L by rotating clockwise if ε > 0, and anticlockwise if ε < 0, unless L = L±,

in which case the two rays coincide5. Considering that the circle map f is orientation-
preserving [14, theorem 3.1], by repeating the above argument it follows that for any ε > 0,
both M[w](c + (ε, 0))L1 and M[w](c + (0, ε))L1 are obtained from the vertical boundary
ray M[w](c)L1 via a clockwise rotation.

From the above argument, it follows that the partial derivatives ∂Qn/∂a and ∂Qn/∂b
are non-zero and agree in sign6, that is, the tangent at any point of the curve has negative
slope. (This also shows that Qn has no isolated points.) We have proved ii).

We prove iii). Let n = |w|, na = |w|a, nb = |w|b, and

(39) Qn(a, b) = anabnb +

n−2∑
k=0

k∑
i=0

ci,k−ia
ibk−i, for some ci,j ∈ Z.

We rewrite the above as follows

(40)

1

ana
Qn(a, b) = bnb +

nb−1∑
j=0

cna,jb
j +O

(1

a

)
|a| → ∞

1

bnb
Qn(a, b) = ana +

na−1∑
j=0

cj,nba
j +O

(1

b

)
|b| → ∞.

As |a| or |b| tends to infinity, the corresponding polynomial on the RHS of (40) must vanish,
each root giving the equation of an asymptote. This gives na + nb = n − 1 asymptotes,
counting multiplicities. Since the curve Qn has order n−1, by Bézout’s theorem, it cannot
have more than n− 1 points on the line at infinity, so there are no other asymptotes.

Let us return to equation (36). If the rank of w is even, then Qn may be (and typically
is) irreducible, as in the case w = a2b2 for which Q4 = ab2−a− b. Thus the equation (36)
is the minimal description of a boundary curve of even rank, in general.

For odd rank, we consider the factorisation (33), and replace (37) by

(41) Cw = {(a, b) ∈ R2 : Cw(a, b) = 0},
where Cw is defined in (32). This is justified as follows. From reversibility we have
xt = xn−t for all t. If n is odd, then the point zk+1 = (xk+1, xk) = ±(Qk+1, Qk) lies
on the symmetry line. Therefore the polynomial Qk+1 − Qk = Cw must vanish on the
legal branch of the curve. In general, there is no further factorisation, as shown by the

5This is theorem 3.2 (i) of [14].
6They are both positive if the rank is odd, and negative if the rank is even.
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example w = a3, for which the polynomial Cw = a − 1 is irreducible. If n is even, then
the points zk+1 and zk are placed symmetrically with respect to the symmetry line, and
hence Qk+1 = Qk−1, that is, Cw vanishes. For w = a4 we have Cw = a2 − 2, which is
irreducible. From theorem 8, we see that k = bn/2c branches of the curve Qn belong

to the curve Cw, while the remaining n − 1 − k branches belong to C̃w = 0. The former
comprises all parameters corresponding to paths of odd rank, while the latter those of
even rank. Here the term rank refers to the orbital rank, namely the number of half-turns
around the origin, which, as already noted, may not be related to the number of factors
ab and ba in the word.

The existence of non-legal branches cannot be avoided by considering only irreducible
curves. For instance, the legal branch for the word w = aκ is the line a = ζκ [cf. (18)], and
ζκ is a root of the irreducible polynomial Ψ2κ(a) [cf. (67)]. This polynomial has degree
φ(2κ)/2, where φ is Euler’s function [20, p 37]). For κ > 4 such a degree is greater than
one, corresponding to as many branches; so there is a non-legal branch.

3.2. Congruences. In this section we consider functions defined on a critical curve Cw,
with word w = w0 · · ·wn−1. Unless indicated otherwise, the results of this section will
apply to the more general setting of reduced palindromic words, as in proposition 7. To
lighten up the notation, we omit explicit reference to w and write C for Cw etc.

Given the polynomial C(a, b) of a curve [see (32)], we consider the polynomial ideal
〈C〉 = C(a, b)Z[a, b] of all the multiples of C in Z[a, b]. (For background, see, e.g., [7].)
The quotient ring Z[a, b]/〈C〉 of residue classes modulo 〈C〉, namely the sets of the form
P + 〈C〉 for P ∈ Z[a, b], represents the polynomial functions P : C → R. We write
P ≡ Q (mod C) to mean that P − Q ∈ 〈C〉, in which case P and Q represent the same
function on C.

Thus equation (34) yields

(42) Qn−t(w1, . . . , wn−t−1) ≡ Qt(w1, . . . , wt−1) (mod C), t = 0, . . . , n,

and considering that Qn ≡ Q0 = 0 and Qn−1 ≡ Q1 = 1, on the curve C the matrix (26)
takes the form

(43) M[w] ≡
(
−Qn−1(w2, . . . , wn−1) 0

w0 −Qn−2(w2, . . . , wn−2) −1

)
≡
(

−1 0
w0 −Qn−2 −1

)
(mod C)

where the second congruence follows from the fact that det(M) has unit determinant
(cf. [14, theorem 3.4]).

The variation of a function f : R2 → R along the curve C is given by the Poisson
brackets

{f, C} =
∂f

∂a

∂C

∂b
− ∂f

∂b

∂C

∂a
.

We consider the observables

(44) ϕt = arctan2(Qt−1, Qt), t = 0, . . . , n,
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which represent the angle of the rays7 in the orbit of the map F, that is, the points of
the orbit segment of the circle map. This follows from the relation xt = sign(w)Qt, where
(x0, . . . , xn) is the one-dimensional orbit segment associated to the curve.

We have

(45) {ϕt, C} =
Q2
t

Q2
t +Q2

t−1
{Qt−1/Qt, C} =

Qt{Qt−1, C} −Qt−1{Qt, C}
Q2
t +Q2

t−1
.

Thus {ϕt, C} has the form ∆t/‖zt‖2, where

(46) ∆t = Qt{Qt−1, C} −Qt−1{Qt, C}, t = 0, . . . , n,

and ‖zt‖2 = Q2
t +Q2

t−1. The latter has no real roots, because any common root of Qt and
Qt−1 would be common to all Qis, which is impossible since Q1 has no roots.

In preparation for the next statement, we consider the polynomials

(47) Ξi =

{
Q2
i
∂C
∂a if wi = b

−Q2
i
∂C
∂b if wi = a,

i = 0, . . . , n− 1

If w is a palindrome, we have Ξn−i = Ξi, for i = 1, . . . , n− 1.

We now establish formulae for ∆t.

Theorem 9. Let C be a boundary curve, and let ∆ and Ξ be as above. The following
holds:

i) ∆0 = 0, ∆t =
t−1∑
i=0

Ξi, t = 1, . . . , n, ∆n ≡ 0 (mod C)

If, in addition, C is a critical curve, we have (k = bn/2c)

ii) ∆n−t ≡ −∆t+1 (mod C), ∆t ≡ −
1

2

n−t∑
i=t

Ξi (mod C), t = 1, . . . ,k.

If n = 2k + 1, then ∆k+1 = {Qk, Qk+1}C ≡ 0 (mod C).

iii)

n∑
t=1

{ϕt, C} ≡ 0 (mod C).

Proof. i) Using linearity and Liebnitz rule for Poisson brackets, (46) becomes

∆t = (wt−1Qt−1 −Qt−2){Qt−1, C} −Qt−1{wt−1Qt−1 −Qt−2, C}
= Qt−1{Qt−2, C} −Qt−2{Qt−1, C} −Q2

t−1{wt−1, C}.

This gives

(48) ∆t = ∆t−1 +Q2
t−1{C,wt−1},

with

{C,wi} =

{
∂C/∂a if wi = b

−∂C/∂b if wi = a.

7ϕt lies in the interval (−π, π].
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From (46) we have ∆0 = ∆1 = 0 and iterating the above recursion we find, for t > 0

∆t =
t−1∑
i=0

Q2
i {C,wi} =

t−1∑
i=0

Ξi,

as desired. To establish the congruence, we let Qn = CC̃ [see (32) and following remark],
and compute

∆n = CC̃{Qn−1, C} −Qn−1{CC̃,C}
= CC̃{Qn−1, C} −Qn−1C{C̃, C} ≡ 0 (mod C).

We have proved i).

We prove ii). Using (42) and (46), we obtain

(49) ∆t+1 ≡ −∆n−t (mod C), t = 0, . . . , n− 1,

which, for n = 2k + 1, yields ∆k+1 ≡ 0 (mod C). More precisely,

∆k+1 = Qk+1{Qk, Qk+1 −Qk} −Qk{Qk+1, Qk+1 −Qk}
= {Qk, Qk+1}(Qk+1 −Qk) = {Qk, Qk+1}C.

Iterating (48) backward and using i) we obtain the formula

(50) ∆t ≡ −
n−1∑
i=t

Ξi (mod C), t = 1, . . . , n− 1.

Since Ξn−i = Ξi, we find, for t = 1, . . . ,k the above sum becomes

n−1∑
i=t

Ξi =
n−t∑
i=t

Ξi +
n−1∑

i=n−t+1

Ξi

≡
n−t∑
i=t

Ξi +
t−1∑
i=1

Ξi (mod C).

Since 0 = Q0 ≡ Qn (mod C), the range of the rightmost sum may be extended to include
i = 0. Then, substituting the above expression in (50), and adding the latter to formula
i), we obtain

∆t ≡ −
1

2

n−t∑
i=t

Ξi (mod C) t = 1, . . . ,k,

which completes the proof of ii).

We prove iii). If n is odd, then from ii) we obtain ∆k+1 ≡ 0 (mod C). Keeping this in
mind, we find

n∑
t=1

{ϕt, C} ≡
bn/2c∑
t=1

(
∆t

Q2
t +Q2

t−1
+

∆n−t+1

Q2
n−t+1 +Q2

n−t

)

≡
bn/2c∑
t=1

∆t + ∆n−t+1

Q2
t +Q2

t−1
≡ 0 (mod C).

This establishes iii) and the proof of the theorem is complete.
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Some remarks on theorem 9 are in place. Part ii) says that ∆k+1 vanishes identically
on C for n = 2k + 1. This is due to time-reversal symmetry: the point zk+1 of the orbit
segment never leaves the symmetry axis.

The statement iii) says that along an orbit segment of a critical curve, the sum of the
angles is constant. To find the value of the constant, we represent the points of the orbit
of F as complex numbers zt = xt + ixt−1, with z0 = −sign(w)i. We seek the value of

S =
n∑
t=1

ϕt =
n∑
t=1

arg(zt) zt = Ft(z0),

for an arbitrary point on C. We rewrite this sum as

(51) S =
1

2

n−1∑
t=0

[arg(zt+1) + arg(zn−t)].

For any non-zero complex number z we have arg(z) + arg(R(z)) ≡ π
2 (mod 2π). From

reversibility, (51) becomes

S =
1

2

n−1∑
t=0

π

2
(mod 2π) ≡ πn

4
(mod π).

In the above formula the modulus may be removed. The value of the sum can be shown
to depend on the numbers of rays lying in the third quadrant, which is constant along C
as long as the code doesn’t change.

In the next section we shall examine further geometrical consequences of theorem 9.

4. Intersections of curves

A double point is a point of intersection of two distinct critical curves. Many geomet-
rical properties of a critical curve C are determined by its intersections with other critical
curves. For instance, C has a single legal branch [theorem 8 i)], but in general not all
points of that branch are legal. It turns out that the legal part of the branch, which we
call the legal arc, is delimited by certain double points.

Theorem 10. For (a, b) ∈ (−2, 2)× (−2, 2), the legal points on the single legal branch of
the critical curve Cw of (41) are not isolated. They form legal arcs that are delimited by
double points.

Proof. It suffices to consider the case of positive w. From theorem 8 and its proof, we
can assume the existence of a parameter pair (a0,b0) that is a non-isolated point of Cw,
for which there is critical orbit, from (0,−1) to (1, 0), with given positive word w whose
reduced word is the palindrome (28). We seek to investigate whether there persists a
critical orbit with the same word for parameters in an open neighbourhood of (a0,b0) on
Cw.

From (25), we have for z1 = (1, 0) and t > 1, zt = (Qt(w1, . . . , wt−1), Qt−1(w1, . . . , wt−2)),
depending on the first t− 1 symbols of w. The coordinates of z(t) are polynomial, hence
continuous, functions of a and b. By assumption, when a = a0 ∈ (ζκ−1, ζκ), κ > 2 and
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b = b0 ∈ (ζ`−1, ζ`), ` > 2, we have zn = (0, 1). From proposition 1, the domain dom(Ma)
is divided into κ sectors by L± and the κ − 1 rays rj(a) of (15) that are functions of a
and rotate anti-clockwise as a increases. Likewise the domain dom(Mb) is divided into `
sectors by L± and the analogous `−1 rays that depend on b only and rotate anti-clockwise
as b increases. The existence of a critical orbit with positive word can be viewed as the
occurrence of a non-empty intersection of the forward semi-infinite L−-orbit with the back-
ward semi-infinite L+ orbit. Under the assumption that t = n is the first visit to (0, 1),
we have that the forward orbit of (0,−1) avoids all sector boundaries in dom(Ma) and
dom(Mb) until it coincides with the first ray (Uκ−1(a), Uκ(a)) in the final visit to dom(Ma)
before completing the critical segment (otherwise it would arrive at L− or L+ earlier than
claimed). Because the sector boundaries in dom(Ma) or dom(Mb) are all iterates of their
first ray, a critical (boundary) orbit for a positive word exists if and only if the forward
orbit of (0,−1) coincides at some point with the first ray of dom(Ma). As soon as this
happens, the forward orbit of (0,−1) and the backward orbit of (0, 1) coincide along a
finite critical orbit segment. Necessarily, this condition on parameters (a,b) of coinciding
with the first ray of dom(Ma) is equivalent to belonging to Cw.

As the critical orbit segment is finite there are a finite number of possible first ray
collisions that can occur as we vary a and b. If at (a0,b0), the only collision is with the
first ray of dom(Ma) in the final block, we can maintain this collision by staying on Cw
and, by continuity of the orbit rays in a and b, continue to avoid first ray collisions in
other blocks of the word on some open arc containing (a0,b0). This arc will be delimited
by parameter values corresponding to other first ray collisions before the final block, i.e.,
double points.

We defer the question of whether there is a unique legal arc on the legal branch to a
later paper [23]. This has to do with whether the earlier first ray collisions are transverse.
We claim each of the rays in the orbit Fj (0,−1), j > 1, move clockwise as a or b increases,
i.e., the opposite direction to the first rays which move anti-clockwise. To see this, realise
that the analysis in theorem 9 applies for arbitrary C, not just the critical curve. Taking
C to be a horizontal or vertical line shows that {ϕt, b} = ∂ϕt

∂a and {ϕt, a} = −∂ϕt
∂b are both

negative. So moving to the right and down on the critical curve is necessary to maintain
the final ray at (0, 1).

Let c = (a,b) ∈ C be such that for some t 6= 0, n we have Qt(c) = 0. We collect all
values of t for which Qt(c) = 0 to form the finite sequence

(52) T = Tw(c) = (t1, t2, . . .) tj < tj+1,

called the intersection sequence of the curve at c. In preparation for the next state-
ment, we denote by Qt,u the t-th Q-polynomials (22) for the word u, and by Qt,u the
corresponding curve. As before, we write Qt for Qt,w.

Theorem 11. Let a critical curve Cw have non-empty intersection sequence T (c) =
(t1, t2, . . .) at a point c. Then c is a double point, |T | is even, and the orbit at c is
periodic with minimal period t2. If we let, for j = 1, . . . , |T |/2,

(53) w = uvu′, where u = w0 · · ·wtj−1 and |u′| = |u|,
then c lies at the intersection of Cw and three curves, namely

(54) Cu,j = Qtj ,u, Cv,j = Qn−2tj ,v, Cuv,j = Qn−tj ,uv.
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The orbital rank of Cv,j is odd, while those of Cu,j and Cuv,j have, respectively, the same
and the opposite parity as j.

Proof. Let t ∈ T . Then n− t ∈ T , from (42). However, we cannot have t = n− t = n/2,
because then from Qn/2 = 0 and C = Qn/2+1 − Qn/2−1 = 0 we would have that all Qis
vanish at c, but Q1 = 1 does not. So |T | is even. By symmetry (w is a palindrome), the
t-th and the (n−t)-th rays are distinct boundary rays, so at c the boundary segment visits
both rays twice, and is therefore periodic. Moreover one of Qt and Qn−t is a critical curve,
and hence c is a double point. During one period the orbit must visit both boundary rays,
so the period cannot be t1, which is minimal. For the same reason, the rays visited at
consecutive tjs must be different. It follows that the minimal period of the orbit is t2, and
that the orbital rank of Qtj has the same parity as j, while that of Qn−tj has opposite
parity.

Consider now the decomposition (53) for fixed j. Since both u and uv are prefixes of w,
with |u| = tj and |uv| = n−tj , we find that Cu,j = Qtj and Cuv,j = Qn−tj . This establishes
the parity of the ranks of Cu,j and Cuv,j . To show that at c the orbit on the curve Cv,j is
the same as the middle segment of the orbit on the boundary curve C, we must verify that
the polynomial Qn−2tj ,v has the correct initial conditions prescribed by (22).

There are two cases. If j is odd, then Cu,j is a critical curve. From (42) we then have
Q1,u(c) = Qtj−1,u(c) = 1, and hence (Qtj (c), Qtj−1(c)) = (0, 1) = (Q0,v(c),−Q−1,v(c)).
Therefore, for t = tj , . . . , n−tj we haveQt(c) = −Qt−tj ,v(c), and in particularQn−2tj ,v(c) =
Qn−tj (c) = 0. Thus Cv,j is a boundary curve of odd orbital rank.

If j is even, then Cu,j is not a critical curve, and to compute Qtj−1(c) = Q−1,v(c)
we cannot use (42). However, since tj is a (not necessarily minimal) period, for some
0 < t < tj the t-th point of the orbit must visit the end ray of C. Then, by concatenating
two critical curves [equivalently, by composing two matrices of type (43)], we conclude
that Q−1,v = ±1. The analysis proceeds as before, and we conclude again that Cv,j is a
boundary curve with odd orbital rank.

Theorem 11 identifies a prominent set of double points associated with a critical curve
Cw. They occur at intersections with curves of lower rank, corresponding to factors of w.
Several points are worth considering.

i) Since Qt(c) = Qn−t(c) = 0, the symbols wt and wn−t may be changed independently
without affecting the dynamics. As a result, at a legal double point the code w may be,
and typically is, improper (see the beginning of section 3).
ii) The Q-polynomials of odd rank may be replaced by the corresponding C-divisor, ac-
cording to proposition 7 i), eliminating the branches with even orbital rank.
iii) From the palindrome property of w and proposition 5 ii), we find that the words u and
u′ generate the same curve, as so do uv and vu′. So the sub-words u, v, and uv describe
completely the decomposition (53).
iv) At a double point c of a critical curve Cw there are |Tw(c)|/2 distinct decompositions,
each involving intersections of boundary curves of lower rank. Thus the minimum number
of decomposition is 1, while the maximum is (ι− 1)/2, where ι is the rank of w.
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For illustration, consider the rank 7 palindrome let w = (a3b4)3a2 [cf. theorem 18, ii),
section 5]. At the double point c = (0, 2 cos(π/5)), we have T = (2, 7, 9, 14, 16, 21), so the
period is equal to 7. The symbols wi are improper for i = 2, 9, 16, so the proper code
is (a2b5)3a2 [see theorem 18 ii) 1 below]. Theorem 11, applied to the proper code, gives
|T |/2 = 3 decompositions:

(55)

t u v u′ ranks

2 a2 (b5a2)2b5 a2 1,5,1
7 a2b5 a2b5a2 b5a2 2,3,2
9 a2b5a2 b5 a2b5a2 3,1,3

The proper code is a prefix of the periodic word (a2b5)∞ of period 7.

At c = (1, 2 cos(3π/11)) we have T (c) = (3, 20), so the period is 20. The symbol
w20 = wn−3 is improper. The proper code is (a3b4)2a3b3a3, which is a prefix of the
periodic word ((a3b4)2a3b3)∞ of period 20. We have |T |/2 = 1 decomposition:

t = 3, u = a3, v = (b4a3)2b3, u′ = a3 ranks: 1, 5, 1.

Next we provide a formula for the rotation number at a double point, and a partial
converse of theorem 11.

Lemma 12. Let Cw and Cw′ be distinct critical curves of ranks ιw and ιw′ (with ιw′ 6 ιw,
say), which intersect at a legal point c. Then

(56) θ(c) =


ιw + ιw′

2(|w|+ |w′|)
if sign(w) 6= sign(w′)

ιw − ιw′′
2(|w| − |w′′|)

if sign(w) = sign(w′),

where w′′ = w′ if ιw′ 6= ιw, and otherwise w′′ is any prefix of w′ whose length is an
odd-order element of the intersection sequence of w′ at c.

Proof. Let w and w′ have opposite sign, with w positive (say). Then the orbit segment
of w maps L− to L+ in |w| iterates, and that of w′ maps L+ to L− in |w′| iterates. Thus
at the double point c the (non necessarily minimal) period is |w|+ |w′|. Let ιw and ιw′ be
the rank of the words w and w′ at c. Since c is legal, the rotation number at c is equal to
half the combined rank divided by the period, regardless of whether the codes are proper
or improper, the ranks being unaffected by this property.

Let now w and w′ have the same sign (positive, say), hence the same initial ray at c.
We have two cases. If ιw′ < ιw, then the word w′ is equivalent to a prefix of w, so w ∼ w′u′
for some non-empty word u′, and L+ is periodic under u′, with (not necessarily minimal)
period |u′| = |w| − |w′|, and even rank ιu′ = ιw − ιw′ . Letting w′′ = w′ and computing the
rotation number from period and rank, as above, gives the desired formulae.

If ιw′ = ιw, then since the two orbit segments have the same initial condition, we have
|w| = |w′|. Because w 6= w′, the two words will differ at some boundary ray, that is, their
common intersection sequence T at c is non-empty. In particular, T has some odd-order
element tj . It now suffices to let w′′ be the prefix of w′ of length tj and proceed as above.
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The intersection of critical curves described in lemma 12 always leads to a decomposition
w = uvu′ of type (53). Indeed, in the equal sign case, letting n = |w| and n − t =
|w′′| we have Qn−t,w(c) = 0, and, by symmetry, Qt,w(c) = 0. Then both t and n − t
belong to the intersection sequence Tw(c). The required decomposition is obtain by letting
u = w0 · · ·wt′−1 where t′ = min(t, n − t). In the unequal sign case we also obtain a
decomposition of type (53), by considering the word ww′w.

To study intersections of curves, we introduce a sequence of vectors in Z[a, b]2:

(57) G = (Γ0, . . . ,Γn−1)

where

(58) Γt =
t∑
i=0

γi, γt =

{
(Q2

t , 0) if wt = a

(0, Q2
t ) if wt = b.

A key property of this sequence is derived from theorem 9. From i) we have ∆n ≡
0 (mod C), and using again i) and (47) we find

n−1∑
i=1

Ξi =
∂C

∂a

∑
06i<n
wi=b

Q2
i −

∂C

∂b

∑
06i<n
wi=a

Q2
i ≡ 0 (mod C).

The rightmost congruence expresses the vanishing of a determinant on C, which establishes
the following geometrical fact.

Corollary 13. If C is a boundary curve, then the vectors

(59) ∇C =
(∂C
∂a

,
∂C

∂b

)
and Γn−1

are parallel at every point of the curve.

Thus the normal to a boundary curve may be determined without computing deriva-
tives. More precisely, there is a rational function λ ∈ Q(a, b), such that ∇C = λΓn−1 on
C. Since both vectors in (59) are non-zero, the function λ is regular and non-zero on C.
From the corollary we also deduce at once that if the rank of C is greater than one, then
the partial derivatives of C have the same sign [cf. theorem 8 ii)].

For every parameter pair c = (a, b) ∈ R2, the sequence (57) defines a polygonal on the
plane (still denoted by G), obtained by connecting the elements of the sequence by line
segments (figure 3). If c ∈ Cw, then G(c) is called the polygonal of Cw (or of w). The
terms ‘legal’ for points on curves, and ‘rank’ for words or curves, will also be used for
polygonals.

By construction [see (57)] the vertices of G correspond to code changes, that is, to the
occurrence of the factor ab or ba in w. Therefore G has ι edges (line segments) and ι− 1
vertices, where ι is the rank of w. If C is a critical curve, then from (42) and the fact that
the reduced word is a palindrome, we have γi ≡ γn−i (mod C). As a consequence, the
polygonal of a critical curve is symmetrical with respect to its barycentre.

The elements of G are not necessarily distinct, and if Γt = Γt−1 for some t, then we say
that Γt is an intersection point of G. If Γt is an intersection point of G, then γt = (0, 0),
whence Qt(c) = 0. Since 1 = Q1 ≡ Qn−1 (mod C), the end-points of G are not intersection
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Figure 3. The odd-rank legal polygonal Gw(c) for the word w = (a3b4)3a2 at
the intersection c = (1, 2 cos(3π/11)) of the curve Cw with Ca3 . The added line
segments are the medians of Gw and of Gv with v = b4(a3b3)2, which represent
the normal to the curves Cw and Cv at c. These words and curves are described
in theorems 11 and 18 ii).

points, so Qt lies in the interior of the boundary segment, that is, c is a double point of C,
and t belongs to the intersection sequence T (c), see (52). This argument may be reversed,
to show that at a double point, the intersection points of the polygonal and the elements
of the intersection sequence are in bi-unique correspondence.

Intersection points may occur at an arbitrary position on the polygonal. However,
a legal intersection point necessarily corresponds to a code change, even if the code is
improper. Thus the intersection points of a legal polygonal G must occur at the vertices,
and they occur in pairs, symmetrically placed with respect to the barycentre of G. Thus all
vertices of a legal polygonal are intersection points if and only if the intersection sequence
is maximal: |T | = ι− 1.

Let G be a polygonal of odd rank. The segment joining its end-points will be called the
median of G, which bisects G’s middle segment. G is said to be regular if no intersection
point of G lies on the median. To formulate a sufficient condition for regularity, we consider
the intersection sequence Tw(c) = (t1, t2, . . .) [cf. (52)] of a curve Cw at a point c. We say
that Tw(c) is simple if the the word w0 · · ·wt1−1 is equivalent to a word of rank 1 at c.
An empty intersection sequence will also be considered simple.

Theorem 14. An odd-rank legal polygonal with simple intersection sequence is regular.

Proof. First we show that the intersection points of an odd-rank polygonal either all
lie on the median, or none of them does. Let T = (t1, t2, . . .) be the intersection sequence
of G = (Γ0, . . . ,Γn−1). The statement is trivially true if T is empty (e.g., for rank-one
polygonals), since there are no intersection points. If T is non-empty, then the orbit at c
is periodic with minimal period t2, by theorem 11. By periodicity, we have Γt2k = kΓt2 ,
k = 1, . . . , |T |/2, that is, all even-rank intersection points lie on the segment joining the
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origin Γ0 to the last intersection point Γt|T | . By symmetry, all odd-rank intersection points
lie on the segment joining Γn−1 to the first odd-rank intersection point Γt1 . Therefore Γt1
lies on the median, if and only if all intersection points of G lie on the median, as desired.
(Note that this statement holds even if the polygonal is not legal.)

It now suffices to show that that if G is legal and T is simple, then one vertex of G does
not belong to the median. For ι > 1 (the rank-1 case holds by definition) G has at least
two vertices, and all the intersection points (if any) are at the vertices. Since T is simple,
the first vertex is an intersection point, which not on the median by construction. The
proof of the theorem is complete.

Next we show that regular polygonals bring about transversal intersections of curves.

Lemma 15. With the notation of theorem 11, let the polygonal of a critical curve Cw be
regular at a legal double point c. Then the following holds:

i) Cw intersect transversally the curves Cu,j , Cv,j , Cuv,j, for j = 1, . . . , |T |/2.
ii) All pairwise intersections of the families of curves

ii.1) Cu,j , Cv,j , Cuv,j , for fixed j; ii.2) Cv,j , Cv,j′ , for any j 6= j′.

are transversal.
iii) If |T | > 2, then the curves Cuv,j , Cu,k with j odd and k even are tangent.

Proof. We fix j in (53), and let k(j) = |T | − j + 1. Then j and k have opposite
parity, while Γtj and Γtk are symmetric with respect to the centre of G. We define three
subsequences of G:

(60) Gu,j = (Γ0, . . . ,Γtj−1), Gv,j = (Γtj , . . . ,Γtk−1), Guv,j = (Γ0, . . . ,Γtk−1).

We want to show that Gu,j ,Gv,j − Γtj and Guv,j are, respectively, the polygonals of the
curves Cu,j , Cv,j and Cuv,j ; by construction these polygonals are then embedded in G.

For u and uv the result is immediate, since these words are prefixes of w. For the word
v, we must verify that for i = −1, . . . , n−2tj−1 the sequences Qtj+i(c) and Qi,v(c) agree in
absolute value. Indeed the corresponding codes are the same, and the verification that the
initial conditions (i = −1, 0) are the same has already been given in the proof of theorem
11. It follows that Gv,j is an embedding of the polygonal of Cv,j into G by translation (see
figure 3).

Next we deal with transversality. From corollary 13, the intersections of two curves is
transversal if and only if the medians of the corresponding polygonals are not parallel; so
we shift our attention to medians.

The medians of the polygonals Gu,j ,Gv,j and Guv,j are given by

Au,j = [Γ0,Γtj−1] Av,j = [Γtj ,Γtk−1] Auv,j = [Γ0,Γtk−1].

By symmetry, the Av,js have a common mid-point. Since G is regular, from the proof of
theorem 14 we have that one end-point of Av,j belongs to the segment joining Γ0 to Γt|T | ,
while the other belongs to the segment joining Γn−1 to Γt1 . For this reason, no two Av,j
can be parallel, which is ii.2).



29

Let A = [Γ0,Γn−1] be the median of G. Since G is regular, A = [Γ0,Γn−1] and Av,j
intersect transversally at their common mid-point. Thus A and Av,j are the diagonals of
a parallelogram which has one vertex at the origin Γ0. The medians Au,j and Auv,j of the
other polygonals connect the origin to the vertices of Av,j , so no pair of medians can be
parallel. This is ii.1).

In total, we obtain |T |/2 distinct non-degenerate parallelograms, sharing one diagonal A,
with their second diagonals Av,j forming a pencil through the centre of the parallelogram.
This suffices to establish that A is transversal to all medians Au,j , Av,j and Auv,j , which
implies the transversal intersections of the corresponding curves. This is i).

Suppose that |T | > 2. Then the medians

Auv,1, Au,2, Auv,3, Au,4, . . .

have one end-point at Γ0, while (as pointed out earlier) the other end-points are collinear.
This implies the tangential intersection of the corresponding curves, which is iii).

The proof of the lemma is complete.

Lemma 16. Let C be a critical curve, and let c ∈ C be a legal point. The following
statements are equivalent:

i) For some t and s 6= t, we have ϕt(c)− ϕs(c) = 0 [cf. (44)].
ii) The intersection sequence T (c) is non-empty.

Proof. If ϕt(c)− ϕs(c) = 0, with t < s, say, then, from the continuity and invertibility
of the circle map, we have that ϕt+j(c) − ϕs+j(c) = 0, j = −t, . . . , n − s. Thus the orbit
segment is part of a periodic orbit of period k := s − t, which contains both ϕ0 and ϕn,
that is, c is a double point. The value j = −t corresponds to a collision of the kth ray
with the initial boundary ray (zk = z0), while j = n − s yields the same phenomenon
for the end boundary ray (zn−k = zn). Thus Qk(c) = 0, which means that k ∈ T (c),
that is, T (c) is non-empty. Conversely, if T (c) is non-empty, then by theorem 11 we have
ϕt2(c)− ϕ0(c) = 0.

Condition i) expresses the collision of points of the orbit of the circle map at c. The
transversality —or lack of it— of such a collision is expressed by the validity —or lack of
it— of the inequality ϕ′t(c) 6= ϕ′s(c), where ϕ′ = {ϕ,C}. This condition is independent from
the choice of t and s along the orbit. Indeed, suppose that ϕ′t(c)−ϕ′s(c) = 0. Then (45) and
(46) give (Q2

t +Q2
t−1)∆s = (Q2

s +Q2
s−1)∆t. Using the recursion (48), and keeping in mind

that ws = wt and that QsQt−1 = QtQs−1, we obtain ∆s±1(Q
2
t +Q2

t−1) = ∆t±1(Q
2
s+Q2

s−1).

Since zt = λzs, for some λ, then also zt±1 = λzs±1, from the local linearity of F±1. Thus
∆s±1‖zt±1‖2 = ∆t±1‖zs±1‖2, that is, {ϕs±1, C} = {ϕt±1, C}. Repeating this argument an
appropriate number of times, we find that all intersections are non-transversal.

An end-point of a curve is a point on the boundary of the curve’s legal arc.

Theorem 17. At an end-point c of a critical curve C the intersection sequence T (c) is
non-empty. Conversely, if T (c) is non-empty and G(c) is regular, then c is an end-point.
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Proof. The initial and final rays of a critical curve are boundary rays, which, by def-
inition, remain fixed along the curve. If c ∈ C is an end-point of Cw, then at c some
intermediate ray must become a boundary ray. Equivalently, the intersection sequence
Tw(c) is non-empty.

Suppose that T (c) is non-empty. Then, according to theorem 11, the curve C intersects
the curves of lower rank given in (54). If G(c) is regular, then these curves intersect C
transversally, from lemma 15 i). This in turn means that the corresponding rays intersect
boundary rays transversally [that is, {ϕ,C} 6= 0 at c, see (45)], so that the code becomes
illegal at c.

The regularity of G is not necessary for c to be an end-point. Indeed using lemma 16,
the end-points may be characterised in terms of collisions of points of the orbit of the
circle map, and these collisions need not be transversal to render a code illegal.

5. First-generation critical curves

Proposition 3 established all critical curves of rank 1. In this section we construct
two classes of boundary curves of higher rank. First, all rank-2 curves, obtained by
concatenating two rank-1 words of opposite sign. Second, all the critical curves of the
first generation. They are constructed by concatenating an arbitrary number of copies
the same rank-2 word, and then extending the resulting word —to the right or to the
left— with a suitable rank-1 word. First-generation curves are regrouped to form infinite
pencils, incident to the same point, the basis of the pencil. For reason of brevity, we shall
only deal with curves which lie in the first quadrant of the (a,b)-parameter space, leaving
the general case to the sequel of this paper [23].

We begin by partitioning the first quadrant into rectangular rotational domains Dκ,`,
given by ζκ 6 a 6 ζκ+1 and ζ` 6 b 6 ζ`+1 (figure 2). We will show that the legal arc of a
rank-2 word lies within a single rotational domain, while that of a first-generation critical
curve occupies two neighbouring domains (see figure 4).

We establish some notation. The boundary words aκ and b` have rank 1 and opposite
sign. Thus, from equation (18) and lemma 12, at the intersection of the corresponding
curves we have the double point

(61) cκ,` := Caκ ∩Cb` = (ζκ, ζ`) θ(cκ,`) =
1

κ+ `
.

We shall make repeated use of the functions

(62) ϑ±j,m =
m

mj ± 1
, ζ±j,m = 2 cosπϑ±j,m.

In the rest of this paper we write Cw to mean the legal branch of Cw.

We now state and prove the main result of this section.
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(4, 3)

(3, 6)

(2, 5)
(3, 5)

(4, 4)
(5, 4)

Figure 4. Illustration of theorem 18 for the domain D3,4 (the grey rectangle).
The black curve, of type i) in the theorem, is the axis of the domain. The blue
and red curves are critical curves, of type ii) and iii), respectively and m = 1;
they intersect the boundary of the domain at the mediant rotation number of the
adjacent vertices. The integer pairs represent the subscripts of the vertices cκ,`,
which are joined by the curves.

Theorem 18.

i) For all κ, ` > 2 the words aκ+1b` and b`+1aκ give the same rank-2 curve with
end-points cκ,`+1 and cκ+1,`.

ii) The following sequences of words w(m),m = 1, 2, . . . define pencils of critical
curves, with end-points e (the basis) and em, given by

w(m) e em θ(em)

1) (aκ+1b`)maκ cκ,`+1 (ζκ+1, ζ
−
`,m) ϑ−κ+`+1,m

κ > 2, ` > 2
2) aκ+1(b`aκ)m cκ+1,`−1 (ζκ, ζ

+
`,m) ϑ+κ+`,m

3) (b`+1aκ)mb` cκ+1,` (ζ−κ,m, ζ`+1) ϑ−κ+`+1,m
κ > 2, ` > 2,

4) b`+1(aκb`)m cκ−1,`+1 (ζ+κ,m, ζ`) ϑ+κ+`,m

while θ(e) is given in (61).

Proof. We denote by Σi, i = 1, . . . , 4 the ith quadrant in phase space.

We prove i). The reduced words of w = aκ+1b` and w′ = b`+1aκ are mapped into
one another by a reflection symmetry. From proposition 5 ii), it then follows that the
corresponding curves are the same.

We consider the double points cκ,`+1 and cκ+1,`, with proper positive codes (aκb`+1)∞

and (aκ+1b`)∞, respectively. At the former point, w ∼ aκb`+1; at the latter, w is proper.
Likewise, w′ is proper at cκ,`+1 and w′ ∼ b`aκ+1. Thus both points are legal for both codes
and from theorem 8 i), there is precisely one arc of Cw connecting them. As we proceed
along this arc from cκ,`+1 to cκ+1,`, the κ-th ray (Qκ, Qκ−1) of the positive orbit rotates
clockwise into Σ1, since κ > 1. The (κ+1)-st ray remains in Σ2, because, by construction,
there are no active branches of positive rank-1 curves in the interior of Dκ,`.
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Thus the legal arc of Cw contains Cw ∩ Dκ,`. The monotonicity of ray rotations with
a prevents the prolongation of the legal arc outside Dκ,`. An analogous argument shows
that the legal arc of Cw′ is the same as that of Cw. Statement i) is proved.

Next we turn to critical curves, making a preliminary remark. If a positive curve Cw of
rank greater than 1 intersects Caκ at a legal point c, then c is necessarily an end-point of
Cw. Indeed, since the code at c is aκb · · · , the word aκ is equivalent to a prefix of w, and
hence at c the intersection sequence of Cw is simple. Then, by theorem 14 the polygonal
of the curve is regular at c, and hence c is an end-point for Cw, from theorem 17. The
same holds for a negative curve intersecting Cb` .

We prove ii) part 1. Let w(m) = (aκ+1b`)maκ. At the double point cκ,`+1 = (ζκ, ζ`+1),

the proper code is (aκb`+1)∞, and w(m) ∼ (aκb`+1)maκ. Thus, for all m, the point cκ,`+1

is a legal point of the curve Cw(m) , hence an end-point, from the above remark. We have
shown that e = cκ,`+1.

We now prolong Cw(m) inside the domain Dκ,`−1 ∪ Dκ,`. We write Cκ,` for the axis
Caκ+1b` and we let

(63) L := M[w(m)]L
− = M[aκ]M[(aκ+1b`)m]L

−.

We fix a in the range ζκ < a < ζκ+1, and we proceed by induction on m.

Let m = 1. We choose b so that (a,b) lies in the region bounded by Cκ,` and Cκ,`−1. If

(a,b) ∈ Cκ,`, then i) and (63) give L = Mκ
aL
− ∈ Σ1, with the code w(1). If (a,b) ∈ Cκ,`−1,

then

(64) M[aκ+1b`−1]L
− = L− and M[aκ+1]L

− ∈ Σ2.

An infinitesimal increase in b changes the code aκ+1b`−1aκ+1 to w(1), while leaving the
orbit segment unchanged. From (64) we conclude that just above Cκ,`−1 we have L ∈ Σ2.
Thus, from continuity and monotonicity, there must be a unique value of b for which
L = L+, which shows that w(1) is a boundary word of rank 3, and that the curve Cw(1)

has a legal branch between Cκ,`−1 and Cκ,`.

Suppose now that for some m > 1 the curve Cw(m) has a legal branch between Cκ,`−1
and Cκ,`. We fix a and choose b so that (a,b) lies between Cw(m) and Cκ,`. If (a,b) ∈ Cκ,`,
then i) and (63) give M[w(m+1)]L

− = M[aκ]L
− ∈ Σ1. If (a,b) ∈ Cw(m) then, by the inductive

hypothesis M[w(m)]L
− = L+, while M[b`+1aκ]L

+ ∈ Σ2. An infinitesimal increase in b causes

the code w(m)b`+1aκ to become w(m+1), without changing the orbit segment; thus on Cw(m)

we have M[w(m+1)]L
− ∈ Σ2. It then follows that there is a unique value of b in the specified

range for which M[w(m+1)]L
− = L+, which completes the induction.

The point cm = Cw(m) ∩ Caκ+1 has the form (ζκ+1,b), for some b = 2 cos 2πϑb to be
determined. Such a point is legal by continuity, hence is an end-point of Cw(m) (by the

remark above), so that em = cm. To determine b we first find θ(cm). The words w(m) and

aκ+1 have the same sign, and w(m) − aκ+1 = b`(aκ+1b`)m−1aκ; lemma 12 then gives

(65) θ(cm) =
m

m(κ+ `+ 1)− 1
= ϑ−κ+`+1,m.
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The parameter ϑb is related to the rotation number θ(ζκ+1,b) by equation (19). Solving
the latter for ϑb and using (65), we obtain b = ζ−`,m, that is em = (ζκ+1, ζ

−
`,m), as desired.

We have shown that for any m > 1 the curve Cw(m) has a legal arc in Dκ,`−1 ∪Dκ,` with
the stated end-points. The proof of ii) 1 is complete.

We prove ii) part 2. Let w(m) = aκ+1(b`aκ)m. An argument analogous to that used in
ii) 1 shows that cκ+1,`−1 is a legal point of the curve Cw(m) for all m, so that e = cκ+1,`−1.

To prolong Cw(m) inside the domain Dκ,`∪Dκ,`−1 we proceed by induction on m, keeping
in mind that the base case is already established, since for m = 1 the words for the two
statements are the same. Thus assume that for some m > 1 the curve Cw(m) has a legal
branch between Cκ,`−1 and Cκ,`. We fix a in the range ζκ < a < ζκ+1 and b so that (a, b)
lies between Cκ,`−1 and Cw(m) .

If (a,b) ∈ Cκ,`−1, then from part i) M[(b`aκ)m+1] maps L+ to itself, and hence Σ2 to itself.

The second equation in (64) then implies that M[w(m+1)]L
− ∈ Σ2. If (a,b) ∈ Cw(m) , then,

by the inductive hypothesis M[w(m)]L
− = L+, while M[b`aκ]L

+ ∈ Σ1. Since w(m)b`aκ =

w(m+1), on Cw(m) we have M[w(m+1)]L
− ∈ Σ1. It then follows that there is a unique value

of b in the specified range for which M[w(m+1)]L
− = L+, which completes the induction.

As above, em is an end-point of the curve, and the formulae for em and θ(em) are
computed as the corresponding formulae in ii) 1. The proof of ii) 2 is complete.

The proof of ii) 3,4 is obtained from that of ii) 1,2 by merely exchanging parameters.

Let us examine theorem 18 at the light of the material of section 4. We consider the
curves of case ii) 1, of rank 2m+1 the other cases being analogous. At the left end-point e =
(ζκ, ζ`+1) we have w = (aκ+1b`)maκ ∼ (aκb`+1)maκ. With reference to the decomposition
(53), the Q-polynomials of the 2m prefixes u = aκ, aκb`+1, aκb`+1aκ, . . . , (aκb`+1)m vanish,
leading to the following maximal intersection sequence

T (e) = (κ, κ+ `+ 1, 2κ+ `+ 1, 2κ+ 2(`+ 1), . . . ,mκ+m(`+ 1)).

From theorem 14 and 17 we conclude that the polygonal G(e) is regular and that all these
intersections are transversal.

At the right-end point we find, from (62) and ii) 1:

em = (ζκ+1, ζ
−
`,m), ζ−`,m = 2 cos(πm/(m`− 1)).

We now show that

T (em) = (t1, t2) = (κ+ 1,m− κ− 1).

The factor aκ+1 produces a rotation by π, so t1 = κ + 1. The factor b` produces a
rotation by an angle greater than π. For m > 1, the quantity mt/(m` − 1) is an integer
for t = m` − 1 = (m − 1)` + ` − 1, and no smaller positive t, as easily verified. It
follows that T (em) has no term t between t1 and t2 = m − t1, and that at em we have
w ∼ (aκ+1b`)m−1aκ+1b`−1aκ+1. Thus the intersection sequence is maximal only for m = 1.
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However, the polygonal G(em) is still regular for every m, because the first intersection
point lies on the first vertex.

When combined with lemma 12, theorem 18 has the following immediate corollary,
which gives the rotation number of the points of intersection of the odd-rank curves in parts
ii) within the domain Dκ,`. We extend the parameters to include the case m = 0, which

corresponds to the words aκ and b`, respectively (see proposition 3). This is legitimate,
since we only make use of the fact that all these curves are legal in Dκ,`.

Corollary 19. For any κ, ` > 2 and n,m > 0, the following holds

(66)

w w′ θ(Cw ∩ Cw′)

(aκ+1b`)naκ (b`+1aκ)mb` θ−κ+`+1,n+m+1

aκ+1(b`aκ)n b`+1(aκ+1b`)m θ+κ+`+1,n+m+1

Note that the rotation number depends on the parameters through the sums κ+ ` and
n+m.
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Appendix: polynomial identities

For the purpose of factoring various polynomials appearing in our analysis, we introduce
the sequence of polynomials
(67)

Ψ1(X) = X − 2, Ψ2(X) = X + 2, Ψn(x+ x−1) = Cn(x)x−φ(n)/2 n = 3, 4, . . . ,

where Cn(X) is the n-th cyclotomic polynomial (that is, the roots of Cn are the primitive
n-th roots of unity [18, section 2.4]), and φ is Euler’s function [20, p 37]. For n > 2, Ψn

is a monic polynomial in X = x+ x−1, of degree φ(n)/2. Moreover, Ψn is irreducible for
all n, and its roots are the distinct numbers 2 cos(2πk/n), with k coprime to n. These
properties of Ψn are established from the fact that the polynomial Cn has degree φ(n), is
irreducible and reflexive8, together with the repeated use of the identity

(68) xk + x−k = (x+ x−1)(xk−1 + x1−k)− (xk−2 + x2−k) k ∈ Z.

8meaning that Xφ(n)Fn(X−1) = Fn(X)
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5.1. Iterates. Let now MX be as in (20). A straightforward induction shows that the
matrix Mn

X can be written as

(69) Mn
X =

(
Un+1 −Un
Un −Un−1

)
, n > 0,

where Un satisfies the recursion relation

(70) U−1(X) = −1, U0(X) = 0, Un+1(X) = XUn(X)− Un−1(X), n > 0.

We see that for n > 1, Un is a polynomial in X with integer coefficients and degree n− 1;
the term of degree k is nonzero if and only if k has the same parity as n−1. The recursion
(70) is a special case of the more general relation

Un = UkUn−k+1 − Uk−1Un−k n, k ∈ Z

which is obtained from (69) and the identity Mn = Mn−kMk. Using (70), one sees that
for n > 0, Un(X) = Ūn−1(X/2), where Ūn is the nth Chebyshev polynomial of the second
kind, whence Un(2 cos θ) = sinnθ

sin θ .
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Mathématique 44 (1998) 103–132.

[2] V Bazier-Matte, D Racicot-Desloges and T McMillan, Friezes and continuant polynomials with pa-
rameters, Bol. Soc. Parana. Mat. (3) 36 (2018) 57–81.

[3] A F Beardon, S R Bullett, P J Rippon, Periodic orbits of difference equations, Proc. Roy. Soc.
Edinburgh 125 (1995) 657–674.

[4] M di Bernardo, C J Budd, A R Champneys and P Kowalczyk, Piecewise-smooth Dynamical Systems.
Theory and Applications, Springer-Verlag, London (2008).

[5] M Boshernitzan, A condition for minimal interval-exchange maps to be uniquely ergodic, Duke Math.
J. 52 (1985) 723–752.

[6] F W Clarke, W N Everitt, L L Littlejohn and S J R Vorster, H J S Smith and the Fermat two squares
theorem, Amer. Math. Monthly, 106 (1999) 652–665.

[7] D Cox, J Little, and D O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York (1997).
[8] R L Devaney A Piecewise linear model for the zones of instability of an area preserving map, Physica

D 10 (1984) 387–393.
[9] L B Garcia-Morato, E Freire Macias, E Ponce Nuñez and F Torres Perat, Bifurcation patterns in
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