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We consider the problem of transport in a one-parameter family of piecewise rotations of the torus,

for rotation number approaching 1=4. This is a zero-entropy system which in this limit exhibits a

divided phase space, with island chains immersed in a “pseudo-chaotic” region. We identify a

novel mechanism for long-range transport, namely the adiabatic destruction of accelerator-mode

islands. This process originates from the approximate translational invariance of the phase space

and leads to long flights of linear motion, for a significant measure of initial conditions. We show

that the asymptotic probability distribution of the flight lengths is determined by the geometric

properties of a partition of the accelerator-mode island associated with the flight. We establish the

existence of flights travelling distances of order O(1) in phase space. We provide evidence for the

existence of a scattering process that connects flights travelling in opposite directions. VC 2011
American Institute of Physics. [doi:10.1063/1.3624797]

The problem of transport is fundamental in dynamical

systems theory and its applications. In the simplest sce-

nario—much studied over several decades—one finds dif-

fusive (Gaussian) collective transport, originating from

exponentially unstable individual orbits. If the rate of ex-

ponential instability is not bounded away from zero,

anomalous (non-diffusive) transport phenomena have long

been known to exist. Such transport anomalies often fea-

ture so-called “flights,” segments of orbits during which a

particle proceeds at constant speed. The probability of a

flight invariably decreases as an inverse power of the

flight’s length; this power is determined by the detailed

structure of the complicated boundary between regular

and chaotic regions in phase space. A complete theory of

these transport anomalies is still missing. There is a class

of non-smooth dynamical systems—of increasing impor-

tance in applications—which do not have exponential

instability at all, but which nonetheless exhibit the kind of

orbital complexity found at the boundary of chaos. Trans-

port in these systems is typically anomalous. In this work,

we investigate a two-dimensional area-preserving model of

this type, obtained by combining two distinct isometries

(rotations and translations). We show that the appearance

of a slow variation of some local parameters across phase

space increases dramatically the probability of occurrence

of long flights. We compute such a probability, using geo-

metrical methods.

I. INTRODUCTION

This paper is devoted to the study of transport in a two-

dimensional area-preserving map, with “pseudo-chaotic”

behaviour, continuing the work in Ref. 17. The suggestive—

yet informal—term pseudo-chaos, was first used in the

physics literature to characterise the statistical behaviour of

dynamical systems with discrete energy spectrum.7 This

term now describes a broad range of complex dynamical

phenomena that occur in systems with zero entropy, where

chaos—positive Lyapounov exponent—is absent, but where

a form of (non-exponential) sensitive dependence on initial

conditions is still present.

An interesting example of anomalous transport, originat-

ing from accelerator-mode related flights, was studied in

depth by Zaslavsky, Edelman, and Niyazov19,20 in the web

map with 4-fold rotational symmetry, with the translational

symmetry of a simple square lattice. The authors found that

for special parameter values, the chaotic sea of the funda-

mental square contains small accelerator-mode islands sur-

rounded by self-similar island-chain hierarchies which are

responsible for lengthy flights and super-diffusive asymp-

totic behaviour on the infinite plane. Similar effects were

found in the lifted standard map,19 as well as for the Cassini

billiard (particle scattering elastically from a square lattice of

Cassini ovals).18 A somewhat different mechanism, but

again associated with accelerator modes, was found by

Dana9 in the context of a web map with 3-fold symmetry.

We note that the connection between anomalies in transport

processes and the presence of stable islands in a chaotic sea

has been known for a long time [Ref. 6, Sec. 5.5].

Pseudo-chaos is ubiquitous in piecewise isometric sys-
tems. These are higher-dimensional generalisations of inter-

val-exchange maps, in which the dynamics is locally a

translation, rotation, or reflection. The local isometric

domains are called atoms, and the map acts discontinuously

at the boundary of the atoms. Interesting asymptotic phe-

nomena take place in the so called exceptional set (the clo-

sure of the set of points whose orbits get arbitrarily close to

the discontinuity of the map), which plays the same role as

the set of separatrices in smooth maps. In recent years these

systems have attracted much attention, in both theory and

applications (see Refs. 1, 8, 10, 17, and references therein).

Piecewise isometries have zero topological entropy.5,12

Nonetheless, their behaviour can be exceedingly complex,

and very few general results are available. For instance, the
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extent to which the exceptional set can exhibit mixing is not

known. (There is no higher-dimensional analogue of the

Avila-Forni theorem,3 which states that almost every inter-

val-exchange transformation is weak-mixing.) The question

of the positivity of the measure of the exceptional set—

known as Ashwin’s conjecture2—also remains unresolved.

(For a recent development, see Ref. 13.)

Transport phenomena in piecewise isometries remain

largely unexplored. In Ref. 16, a family of kicked-oscillator

models was introduced, leading to a skew system, namely a

two-dimensional lattice map driven by a piecewise isometry of

the torus. It was shown that the orbits in the exceptional set of

the piecewise isometry can generate non-trivial lattice motions,

featuring various types of anomalous transport. In particular,

for a specific choice of parameters (corresponding to a rational

rotation studied in Refs. 1 and 14), the existence of super-diffu-

sion was demonstrated. In Ref. 11, a piecewise isometry of the

plane was studied, consisting of a rotation followed by a piece-

wise translation. It was shown that almost all points are recur-

rent, even if Poincaré recurrence theorem does not apply

because the system has an infinite invariant measure.

In the present paper we study flights in a one-parameter

family of two-dimensional piecewise isometries. In this

model, long flights are generated by a novel mechanism,

namely the adiabatic destruction of accelerator-mode islands.

We will show that while an accelerator mode islands always

supports flights, its adiabatic destruction results in a substan-

tial increase of the measure of initial conditions correspond-

ing to flights.

We consider the following map F of the unit square

X¼ [0, 1)2

F : X! X ðx; yÞ7!ðkx� yþ iðx; yÞ; xÞ
iðx; yÞ ¼ � kx� yb c;

(1)

where �b c denotes the floor function and jkj< 2. This map is

area-preserving. It consists of a linear elliptic map x; yð Þ7!
kx� y; xð Þ, followed by a piece-wise translation which

brings the point back to the unit square X. The map F has

time-reversal symmetry15

F�1 ¼ G � F � G�1 G : X! X ðx; yÞ7!ðy; xÞ: (2)

It is linearly conjugate to a piecewise rotation on a rhombus

with rotation number q, where k¼ 2cos(2pq). Depending on

the value of k, this map has two or three atoms.

We are interested in the limit k ! 0, some properties of

which were studied in Ref. 17. At k¼ 0, the dynamics is triv-

ial, a rotation by p=2. As k approaches 0, the phase space

decomposes into two parts, a central disc supporting regular

motions (rotation by an angle approaching p=2), and four cor-

ner sectors with highly non-trivial dynamics(see Figure 1). The

corner sectors feature infinitely many islands, immersed in a

region with very complicated features. Because in this limit

the phase space becomes very homogeneous, the study of

some aspects of transport outside the aforementioned islands

becomes possible. This justifies our interest in this limit.

In Ref. 17, it was shown that the dynamics outside the

central disc may be studied via the return map L of a certain

domain K, a thin strip of length O(1) and thickness O(k)

located within one of the corner sectors of Figure 1. As k! 0,

the domain K, rescaled in such a way as to have thickness

O(1), becomes an infinite strip; its return map is a piecewise

isometry with infinitely many atoms (see Figure 5). Within

each atom there is a single symmetric elliptic fixed point, sur-

rounded by an island of maximal size, which corresponds to an

elliptic periodic orbit of the original map F. These are the pri-
mary islands. Even though the difference between adjacent

atoms becomes negligible in the limit, the strip K is not trans-

lationally invariant. As a consequence, the location and size of

the islands changes slowly with the position along the strip,

and so do the features of the complementary region. The main

result concerning the primary islands of the map F is that, as k
! 0, the decrease in the size of the islands balances exactly

the increase of their number, so that the islands’ total measure

approaches a positive limit [Ref. 17, Theorem A].

The purpose of this paper is to analyse an important as-

pect of the dynamics outside the primary islands, namely the

existence of flights with lengths of order O(1) for orbits

occupying a substantial measure. Their presence establishes

the piecewise connectedness of this region, because an iso-

lating invariant set cannot exist on a flight’s path. We

describe in detail the geometrical structure that determines

the probability distribution of the flights’ lengths. The as-

ymptotic aspects of these dynamics depend on the structure

of the exceptional set within the complement of the primary

islands, the so-called pseudo-chaotic domain. This research

aims to shed some light on the structure of this domain,

whose properties are little known.

We first review the model in Ref. 17, and the associated

map L of the domain K (Sec. II). Numerical experiments

reveal the presence of intermittent behaviour, with flights

along K separated by bursts of pseudo-chaotic behaviour. To

explain these phenomena, we define simplified models,

which introduce gradually the full complexity of the map L,

isolating important dynamical features (Sec. III). The sim-

plest model—the local model—consists of an infinite array

of identical piecewise isometries with two atoms (Figure 6).

The local model allows us to explore the region outside the

primary islands in the limit k! 0 (which was not considered

in Ref. 17), revealing a very rich dynamics. In the local rep-

resentation, the domain K is an infinite strip; using transla-

tional invariance, we obtain a six-atom piecewise isometry

of the two-dimensional torus (Figure 7). Every periodic

FIG. 1. Left: Detail of the phase portrait of the map F for k¼ 10�2, corre-

sponding to an irrational value of the rotation number q, close to 1=4. A por-

tion of the large central island appears in the SW corner of the picture.

Right: Magnified view of the region near the NE corner.
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island on the torus which does not lift to a periodic island on

the strip becomes an accelerator mode, resulting in sets of

positive measure travelling to infinity at constant speed, in

both directions. In the immediate vicinity of an accelerator

mode island, orbits exist which remain attached to it for a

long, but finite, number of iterations. These are the flights.

Due to spatial inhomogeneity, the size and location of

the islands of the map L change adiabatically as one pro-

ceeds along the chain of atoms. To reproduce this phenom-

enon, we introduce a slow spatial modulation of the

parameters of the local model. The resulting periodic chain
model (Figure 8), which we study in Sec. III B, also has

translational invariance, but the period comprises a long

chain of atoms. This period is adjusted so as to match the

geometric parameters of the original map F.

All models analysed in this paper admit explicit repre-

sentations of their geometric structure in terms of rational

functions of the parameters. We exploit this feature in order

to derive exact and asymptotic expressions of all relevant dy-

namical quantities, using computer algebra.

In Sec. IV, we study transport. We begin by analysing the

accelerator islands of the local map (Sec. IV A), and the flight

generation near the boundary of such islands (Sec. IV B). We

then show that the slow parametric modulation of the periodic

chain map converts the interior of the accelerator islands into

families of flights. We construct a partition of the islands

which corresponds to flights of different length, thereby deter-

mining the measure of orbits comprising flights of a given

length. In particular, we show that flights exist which propa-

gate through half the spatial period of the periodic chain model

(Sec. IV C). By comparing the asymptotic properties of the

original map with those of the periodic chain model, we show

that the former supports flights of length O(1) (Sec. IV D).

Finally, in Sec. IV E, we briefly consider the dynamical

processes that join flights together. We demonstrate experi-

mentally the existence of a scattering mechanism which con-

nects a flight to its twin moving in the opposite direction.

Some formulae are provided in Appendix.

II. STRUCTURE OF PHASE SPACE

We briefly review the main constructions in Ref. 17.

When k is close to zero, the map F approaches a rotation by

p=2 (Figure 2), and has two atoms, one of which is of area

O(k). The square, X, is partitioned into an invariant central

disc (the maximal disc of the larger atom), and four corner

sectors, where the dynamics of interest to us takes place. Let

R denote the North-East sector. In the following, we will often

use compass directions, NW, SE, etc., to denote the upper-

left, lower-right, etc., corners of quadrilaterals. The mismatch

between the action of F and a rotation by p=2 causes the first

few images of the discontinuity set (the boundary of the atoms

of F) to form a regular net of segments, which envelop the

central disc. The distance between adjacent segments in the

net is O(k), so that the sector R is subdivided into quadrilater-

als of area O(k2).

Over the sector R, the iterated map F (Ref. 4) is close to

the identity, and it can be shown that all orbits leaving R
eventually return to it, apart, possibly, from a set of measure

O(k3). The top row of quadrilaterals in R forms a thin strip

K, which serves as surface of section for the orbits outside

the central disc. The return map L of K is the composition of

two involutions [Ref. 17, Theorem A]

L ¼ H � G: (3)

Each involution is conjugate to a piecewise isometry and the

number of atoms goes to infinity as k! 0. Let the integers n
and m label the atoms of G and H, respectively. Each atom is

a quadrilateral (apart from a bounded number of exceptions),

and the fixed set of the corresponding involution is a diago-

nal (Figure 5) [Ref. 17, Theorems 6 and 11]. These fixed sets

intersect transversally, giving rise to a two-parameter family

of symmetric fixed points, labelled by n and m. Each fixed

point is surrounded by a disc of maximal size and the total

area of these discs approaches a positive limit as k! 0 [Ref.

17, Theorem B].

We are interested in the dynamics of L in K, outside

these islands, and for small values of k. The vertices of the

atoms of G and H are rational functions of k, which can be

computed explicitly [Ref. 17, Lemma 12]. From these for-

mulae, one finds that the difference between adjacent atoms

of G (corresponding to consecutive values of n) vanishes

with k, and so the system has an approximate translational

invariance (see Figure 3).

We are led to consider the limiting case of exact transla-

tional invariance, represented by the local model, which corre-

sponds to a piecewise isometry on the torus (see Sec. III A).

By continuity, this map also has time-reversal symmetry. The

spatial periodicity introduces a new family of periodic islands,

whose lifting to the infinite strip are accelerator modes. These

orbits are necessarily non-symmetrical, and they come in pairs

travelling in opposite directions.

From the above considerations, one would expect the

original model—seen as a perturbation of the local model—

to support quasi-accelerator modes (flights), over a set of

positive measure. This is indeed the case. In Figure 4, we

FIG. 2. Left: Mismatch between the action of F on X and a rotation by p=2,

for a parameter value close to zero. Shown are the first few images of the

boundary of X, which are tangent to the central island. Right: Dominant fea-

tures of the discontinuity set in the North-East sector R.

FIG. 3. (Color online) Atoms of the map L, for k¼ 10�4, showing a very

nearly periodic environment. The discs are the primary islands in three adja-

cent atoms of G, corresponding to n¼ 6099, 6100, 6101.
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plot the position along the chain (represented by the G-atom

number n) as a function of time, for two orbits with initial

condition chosen within accelerator modes of the local

model. We observe the presence of flights, connected by

motions with irregular features, but distinctively localised in

space. The relation between the G-atom number and the

actual position within the strip K depends on k, as should be

clear from Figure 2 (right). (See Sec. IV for details.)

In Sec. III, we will develop suitable models of the map

L, which will be crucial to the analysis of flights to be carried

out in Sec. IV.

III. SIMPLIFIED MODELS OF THE RETURN MAP

If we change coordinates so as to turn L into an actual

piecewise isometry, each four-sided G-atom becomes a kite,

namely a quadrilateral with reflection about one diagonal,

the fixed set Fix G (see Figure 5). Now consider the bound-

ary segment @H between the mth and the (mþ 1)th atoms of

the involution H, for some m. (In the notation of Ref. 17 the

vertices of @H are the points P0(m) and P1(m).)

We consider the chain of kites which intersect @H. This

chain has a central kite, for which @H comes closest to the

midpoint of Fix G (Figure 5). Up to an overall affine transfor-

mation fixing the position, orientation, and scale of the system

on the plane, the geometry is determined by four parameters:

• g0, where a0¼ g0þ 1=g0 is the length of the top side of the

central kite,
• d, the ratio of lengths a0 and a�1 of the central kite’s sides,

minus 1,
• h0, the ordinate of the intersection of @H with the vertical

line going through the mid-point of Fix G in the central kite,
• e, the slope of the segment @H, assumed to be smaller than

the slope of the bottom edge of the kite.

In the original model, all parameters depend on k, but for

our purpose it is convenient to treat them as being independent.

Recalling that on each kite the map G acts as a reflection

with respect to a diagonal, one can show by an inductive

argument that the parameters h and d determine the shape of

all kites. Likewise, the segment @H divides K into two

domains, where H acts the reflection sending the top bound-

ary to the bottom one. Thus h0 and � determine Fix H, and,

again by induction, all the other atoms of H.

If K is infinite, then this construction will generate infin-

itely many kites. Otherwise some irregular atoms may appear

near the right and left boundaries of K. In the original model,

K is finite, and the rightmost G-kite is regular, meaning that

its right side coincides with the boundary of K. (This con-

straint eliminates one parameter.) There are however irregular

G-kites near the tip of K, and irregular H-kites at both ends.

We are interested in the case where the kite chains are of

length O(k�1), where k is very small. In such a case, three out

of the four parameters, namely d, h0, and � will also be small.

By setting one or more of these to be exactly zero, we obtain

simpler models which nevertheless capture the essential dy-

namical behaviour of the full model.

If d¼ 0, all kites become copies of a single rhombus, and

the involution G is periodic. This allows for the possibility of

introducing periodic boundary conditions on the chain.

Indeed, setting one (but not both) of the other small parame-

ters equal to zero, we obtain two significant periodic models,

namely the local model Lloc with � ¼ 0 (its period a is a single

G-kite) and the periodic chain model Lpc with h0¼ 0 (its pe-

riod b is an H-kite). Each periodic model merits our careful

attention below.

A. Local map

The local map is obtained by setting d ¼ � ¼ 0 in the

kite chain described in the above paragraph. This dynamical

system describes the original map L in the k ! 0 limit, and

in the immediate vicinity of a given kite. Such a kite is iden-

tified by specifying the two remaining parameters g and h. In

this section, we regard these parameters as being independ-

ent; their relation will be discussed in Sec. IV D.

In the local model, the (normalised) domain K becomes

the horizontal strip K ¼ fðx; yÞ 2 R2 : �1 � y < 1g, and

the set @H is the line y¼ h. The involution H has two atoms.

It simultaneously reflects vertically the pieces of K above

and below the line y¼ h (see Figure 6)

H : K! K ðx; yÞ7! ðx;�yþ hþ 1Þ if y > h
ðx;�yþ h� 1Þ if y � h

:

�
(4)

Clearly, H is invariant under all horizontal translations.

All kites of the involution G are identical and centrally

symmetric. Placing the barycentre of the central kite P at the

FIG. 4. (Color online) Flights of the

map L, for k¼ 10�4. Left: A flight con-

nected to its time-reversal twin. Right: A

complex sequence of flights having the

same speed.

FIG. 5. (Color online) Atoms of a kite chain, including the central kite.

Within each atom, the action of the map is a reflection G about Fix G, fol-

lowed by a reflection H about the relevant branch of Fix H. The parameters

are explained in the text, with g0¼ tan (h=2).
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origin, we obtain a rhombus, which we represent as a list of

vertices, ordered clockwise. We find

P ¼ ½ð�1=g; 1Þ; ðg; 1Þ; ð1=g;�1Þ; ð�g;�1Þ�;

where g¼ tan(h=2) (recall that h is the (positive) angle of

the NW and SE vertices of P, see Figure 5). We stipulate

that P contains its bottom and left sides, including the vertex

(�g, �1), and no other part of its boundary.

The parallelogram P tiles K under the translation T, where

T : K! K ðx; yÞ7!ðxþ a; yÞ a ¼ gþ 1

g
: (5)

The action of G on P is a reflection with respect to its SW-

NE diagonal. We find

G : P! P ðx; yÞ7!ð2x0 � x; 2y0 � yÞ; (6)

where

x0 ¼ g

g2 þ 1
ðgxþ yÞ y0 ¼ 1

g
x0: (7)

The map G extends by translation to all copies of the central

rhombus P, thereby defining an isometric involution of K.

The local map Lloc is defined as the composition of the

above involutions: Lloc ¼ H � G. The atoms of Lloc on the

central rhombus P are given by

P0¼ ð�1=g;1Þ;ðaðh� cÞ=2;1Þ;ðaðhþ cÞ=2;�1Þ;ð�g;�1Þ½ �;
(8)

P1 ¼ ðaðh� cÞ=2; 1Þ; ðg; 1Þ; ð1=g;�1Þ; ðaðhþ cÞ=2;�1Þ½ �:
(9)

By construction, the local map commutes with the horizontal

translation T by a, so we define the translated copies of the

rhombus P and its atoms

PðnÞ ¼ TnðPÞ PðnÞi ¼ TnðPiÞ n 2N i ¼ 0; 1: (10)

To obtain an explicit expression for Lloc, we define

c ¼ 1� g2

1þ g2
s ¼ 2g

1þ g2
¼ 2

a
: (11)

(Note that c¼ cos(h) and s¼ sin(h), where h is the acute ver-

tex angle of the central kite.) We obtain

LlocðzÞ ¼ TnðJ � T�nðzÞ þ diÞ; z 2 PðnÞi ; n 2N i ¼ 0; 1;

(12)

where

J ¼ �c s
�s �c

� �
; di ¼ ð0; 2iþ h� 1Þ:

The matrix J has unit determinant and complex eigenvalues.

It represents a clockwise rotation by an angle 2pq, where

q ¼ 1

2p
arccos

g2 � 1

g2 þ 1

� �
:

The map Lloc has two symmetric fixed points, one in each

atom, lying at the intersection of Fix G and Fix H (Figure 6).

From translational invariance, we obtain infinitely many sym-

metric fixed points, which are the local images of the primary

periodic points studied in Ref. 17, located in a small neigh-

bourhood of a point in K. The correspondence between the pa-

rameter k, n, and m of the map L and the parameters g and h
of the local map Lloc is given by the following formulae:

g ¼ sþ OðkÞ h ¼ 1

s
þ 2mþ OðkÞ; (13)

where

s ¼ tan
p
4
� 2n arcsin

k
2

� �� �
¼ tan

p
4
� nk

� �
þ Oðk2Þ:

(14)

Since Lloc commutes with the translation T, it can be

reduced to a piecewise isometry Lloc of the torus, obtained

from P by identifying the sloping edges. Due to the added

periodicity, each atom of Lloc splits into three atoms of Lloc.

Indeed, the image of each atom Pi intersects Lk
loc Pð Þ, for

k¼�1, 0, 1. Accordingly, we let

Pi ¼ Pi;�1 [Pi;0 [Pi;1;

where

Pi;k ¼ Pi \ L�1
locðTkðPÞÞ i ¼ 0; 1; k ¼ �1; 0; 1: (15)

The atoms Pi,1 and Pi,�1 are isosceles triangles, with base

angles equal to h, and they are adjacent, respectively, to the

NW and SE vertices of the atom Pi. The atoms Pi,0 are hex-

agons (see Figure 7).

We obtain a six-atom piecewise isometry, mapping P
onto itself

LlocðzÞ ¼ J � zþ di;k; z 2 Pi;k; di;k ¼ ð�ka; 2iþ h� 1Þ:

Formulae for the atoms of Lloc, with explicit parameter de-

pendence, are found in Appendix section “Local map: Atoms.”

The fixed points of Lloc lie in the intersection of the

atoms with their images (see Figure 7). An explicit computa-

tion, using the expressions for Lloc and Pi,k given above,

FIG. 6. (Color online) An atom of the local map Lloc. The dashed lines are

the fixed lines of the involutions G and H.
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shows that each atom Pi,k of Lloc contains a fixed point,

which exists in the parameter range specified below.

atom parameters symmetric?

P0;0 all yes

P0;1 h � g2 no

P0;�1 h < �g2 no

P1;0 all yes

P1;1 h < �g2 no

P1;�1 h � g2 no

(16)

The non-symmetric fixed points correspond to accelera-

tor modes, see Sec. IV A.

B. Periodic chain map

The periodic chain (PC) map Lpc is obtained by setting

d¼ h0¼ 0 in the kite chain described in Sec. III, but allowing

the parameter � to be different from zero. This dynamical

system is an approximation of the original return map L in

the k ! 0 limit, over a spatial range of order O(1) corre-

sponding to a single m-value. Once again, the map is a com-

position of two time-reversing involutions, G and H, but now

the arrays of atoms of G and H are endowed with commensu-

rate periodicities, a and b. In addition, we will find related

involutions G0 and H0 with restricted, but still useful, time-

reversing properties.

The periodic chain map is a chain of N identical rhombi,

repeating indefinitely along the strip K¼f(x, y):

�1� y< 1g. The rhombi, labelled by n, are arranged sym-

metrically around a central rhombus, corresponding to n¼ 0.

Hence, N is an odd integer. The spatial periodicity of the per-

iodic chain map Lpc is b¼Na, where a¼ gþ 1=g is the peri-

odicity of the local map Lloc. The atoms of H are arranged in

such a way as to extend over one period. The setup is illus-

trated in Figure 8, for one period. The slope � of the H-atom

boundary line @H is

� ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4
p : (17)

In addition, we introduce the notation

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
¼ b�

2
:

The periodic chain map decomposes as Lpc ¼ H � G where

the involutions G and H are given by

G
x
y

� �
¼ na

0

� �
þ �c s

s c

� �
x� na

y

� �
; (18)

H
x
y

� �
¼ ðm� 1

2
Þb

0

� �
� 1

�1

�1 �
� 1

� �
x� ðm� 1

2
Þb

y

� �
;

(19)

with

m ¼ mðx; yÞ ¼ xþ y=�

b

� 	
: (20)

The fixed lines of the involutions are

FixG ¼ ðx; yÞ : y ¼ ðx� naÞ=g; n 2 Zf g;

FixH ¼ ðx; yÞ : y ¼ �1 � 1

�

� �
x� m� 1

2

� �
b

� �
; m 2 Z

� 

:

The atoms of H are the rhombi

WðmÞ ¼ Wð0Þ þ ðmb; 0Þ ¼ ðx; yÞ : mðx; yÞ ¼ mf g; m 2 Z;

with m given by (20) and

Wð0Þ ¼ �1

�
� b;1

� �
; �1

�
;�1

� �
;

1

�
;�1

� �
;

1

�
� b;�1

� �� �
;

with vertices arranged clockwise. Note that the total horizon-

tal extent of each atom is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4
p

þ b, slightly less than two

full periods of the chain for large N.

The map Lpc is piecewise a composition of two reflec-

tions. Hence it is a piecewise isometry, given by

LpcðzÞ ¼ J � zþ di;n; z 2 Pi;n; i ¼ 0; 1;

where the rotational part is

J ¼ c1 s1

�s1 c1

� �
; c1 ¼

�c� �s
�1

; s1 ¼
s� �c
�1

; (21)

and the translations are

di;n ¼
na

�1

ð1� c1�1;��þ s1�1Þ

þ 2
2nþ N � 1

2N


 �
þ 2i� 1

� �
�1 � 1

�
; 1

� �
:

FIG. 7. (Color online) Top: Atoms of the local map �Lloc of the rhombus P,

for g¼ 1=6, h¼ 171=500. Bottom: Images of the atoms under the map.

FIG. 8. (Color online) (a) Domains and fixed lines of the periodic chain

map. (b) Detail for the central G-atom (n¼ 0).
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The atoms PðnÞi are given explicitly in Appendix section

“Periodic chain map: Atoms.”

In addition to the pair of time-reversing involutions G
and H, the periodic chain model possesses a related pair of

involutions, G0 and H0, which provide a restricted form of

time-reversal symmetry. This will turn out to be especially

relevant to the analysis of long flights in Sec. IV C. The map

H0 is defined as a reflection about the short diagonal of each

H-atom W(m). Specifically,

H0
x
y

� �
¼ ðm� 1

2
Þb

0

� �
þ 1

�1

�1 �
� 1

� �
x� ðm� 1

2
Þb

y

� �
;

with m given by Eq. (20). The following result establishes

the significance of H0 for the periodic chain map Lpc:

Lemma 1: Let B(m,n) be the interior of the convex poly-
gon PðnÞi \ GðPðnÞi Þ, where

i ¼ iðm; nÞ ¼
0 if n0 þ mb � n < n0 þ ðmþ 1Þb
1 if n0 þ ðm� 1Þb � n < n0 þ mb:

�

Then, on the set [m;n Bðm;nÞ, the following identity holds

Lpc ¼ H0 � L�1
pc � H0:

Proof: By periodicity, it will be sufficient to restrict our-

selves to the H-atom W(0) and the P(n) which intersect it. The

vertices of the polygons B(0,n) can be computed explicitly

using the formula (18) for G and the formulae for the atoms

PðnÞi given in Appendix section “Periodic chain map:

Atoms.” The verification of the validity of the lemma from

these formulae is a straightforward exercise in computer-

assisted algebra.

In Sec. IV C below, we will see that the set [n Bm;n con-

tains the pathways of all of the maximum-velocity flights in

W(m), apart from those on the discontinuity set, and so H0

serves as an important reversal symmetry for such orbits.

From the lemma, we can define a partner involution

G0 ¼ Lpc � H0 so that Lpc ¼ H0 � G0 on [m;n Bðm;nÞ. Note that

G0 maps Bðn0þtÞ into Bðn0�t�1Þ, and consists of a reflection of

each G-atom about its long diagonal, followed by an n-shift.

To each G-atom of the periodic chain map, identified by

an integer n, we associate a pair g, h of parameters of the

local map. Since all G-atoms are identical, the value of g is

the same as that of the periodic chain map (determined by

the central kite, see Figure 8), while h is given, in the central

H-atom, by

h ¼ �n�a; (22)

where the parameters a and � were defined in Eqs. (5) and

(17), respectively. Geometrically, na gives the centre of the

nth rhombus, while h is the vertical distance between the

centre and the line @H.

The parameters of the periodic chain map are related to

those of the original map as follows. We begin by fixing a

value of m. This gives us N, which is the number of G-atoms

intersecting the boundary between the mth and the (mþ 1)

atoms of H. To compute g, we identify the central kite, and

then scale it until the mid-point of its lower side is at distance

2 from the line through the top side. This fixes the length of

the top side. There is only one rhombus P whose lower side

belongs to the horizontal line going through this mid-point.

This rhombus P defines the value of g uniquely.

IV. TRANSPORT

In this section, we begin the study of transport along the

strip K, which takes place in the complement of the primary

islands. The simplest scenario is that of the local map Lloc,

where transport is dominated by accelerator modes. The local

map will serve as a template for the analysis of transport in the

periodic chain map Lpc, which may be considered as an adia-

batic perturbation of the local map. The periodic chain map is

in turn a template for the original map L, where the translational

invariance of the former is broken by a small asymmetry.

A. Accelerator modes

We consider the local map Lloc, developed in Sec. III A.

The periodic points of its reduction Lloc to the torus P may be

divided into two families, namely those which are also periodic

under Lloc, and those which are not. The latter are accelerator
modes of Lloc, namely orbits that have a non-zero (average) ve-

locity v along K. More precisely, for every z 2 K, we define

vðzÞ ¼ lim
t!1

Lt
locðzÞ

t
; (23)

if the limit exists. Thus z is an accelerator mode if vðzÞ in

non-zero. Clearly, vðzÞ is the same for all points of the cell

containing z. If z is a periodic point of Lloc, then

z ¼ T�m Ln
loc zð Þ

� �
, for some m; n 2 Z with n> 0, and, there-

fore, v(z)¼ am=n. Because the parallelogram P is equilat-

eral, it is easy to see that

jvðzÞj � a; (24)

where the maximal velocity corresponds, on average, to

incrementing n by one at each iteration.

Accelerator modes, as defined via Eq. (23), are not nec-

essarily periodic orbits of the reduced map. However, in the

literature this term invariably refers to a (stable) periodic

orbit, and in the present paper we shall also restrict our atten-

tion to the periodic case. A periodic accelerator mode is non-

symmetric, because Lloc is conjugate to its inverse under G,

and G sends an accelerator mode moving to the right into

one moving to the left, which is a distinct orbit. For this rea-

son, it suffices to consider accelerator modes with positive

velocity.

We will concentrate on the case of maximal velocity a.

To this end, we consider the fixed points of Lloc, classified in

Eq. (16). By construction, the action of Lloc translates the

fixed point in Pi,k by ka. Hence, only the value k¼ 0 leads to

fixed points of Lloc, which correspond to the primary fixed

points of the original map L. The other four fixed points are

accelerator modes of maximal velocity. Let zi¼ (xi,1, yi,1) be

the accelerator fixed point located within Pi,1, and let Ai be

the corresponding cell. We have (for g> 0)

xi;1 ¼ �
g2 þ 1

2
� hþ 2i� 1

2
; (25)
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yi;1 ¼ �
g2 þ 1

2g
þ hþ 2i� 1

2
: (26)

The fixed point in Pi,�1 is obtained from the above by

changing sign.

Next we show that the islands Ai exhaust the set A of

accelerator modes of maximal velocity, that is, every z 2 A
has a symbolic itinerary ((i, 1), (i, 1), (i, 1),…), visiting in

succession the atoms Pi,1, T(Pi,1), T2(Pi,1),…. To see this,

consider the sets

Ni;j ¼ Pj;1 \ T�1ðLlocðPi;1ÞÞ ¼ Pj;1 \ LlocðT�1ðPi;1ÞÞ;
i; j 2 f0; 1g:

This is the set of points in Pi,1 whose image is in the atom

Pj,1 of the neighbouring rhombus, corresponding to succes-

sive code elements (i, 1) and (j, 1) in the symbolic itinerary.

A straightforward calculation shows that for h� g2,

z0 2 A0 � N0;0; N0;1 ¼ N1;1 ¼ ;; (27)

and for h<�g2,

z1 2 A1 � N1;1; N1;0 ¼ N0;0 ¼ ;: (28)

From Eq. (27) it follows that for h� g2, no periodic code can

have the symbol (1, 1), and hence the only accelerator mode in

the given parameter range is that with code ((0, 1), (0, 1),…),

namely A0. The analogous argument for h<�g2, with (0, 1)

and (1, 1) interchanged, proves the uniqueness of A1.

The sets N0,0 and N1,1 are isosceles triangles for

g2 < h <
1þ 5g2

3� g2
and � 1þ 5g2

3� g2
< h < �g2; (29)

respectively, and are quadrilaterals otherwise.

A straightforward calculation shows that the point zi is

equidistant from three sides of Ni,i, and that the nearest

points are mapped into each other by Lloc. Thus the cell Ai is

maximal. For irrational rotation number (see below), the dis-

tance from zi to the boundary of Di is the radius of Ai, which

is given by

ri ¼
1

2
ðjhj � g2Þ: (30)

The island Ai has rotation number

qi ¼
1

2p
arccos

1� g2

1þ g2

� �
: (31)

B. Flight generation in the local model

In this section, we study an iterative process which generates

flights in a “halo” region surrounding accelerator islands in

the local model. By definition, a flight of length t maintains

the same symbolic itinerary as the accelerator mode, for t
iterations of Lloc. In Sec. IV C, we will show how a small

perturbation may convert the entire accelerator mode island

Ai into flights, substantially increasing the measure of initial

conditions that participate in this process. The parameters zi,

ri and qi of the island Ai will be important in this analysis.

We limit our discussion to the halo of the maximal ve-

locity accelerator island (v¼ a). This case displays in their

simplest form the features of trapping around more general

accelerator islands. For any integer n, let P(n)¼Tn(P) be the

translated rhombus, and let

PðnÞi ¼ TnðPiÞ; AðnÞi ¼ TnðAiÞ i ¼ 0; 1

be the corresponding atoms of Lloc and accelerator islands of

maximal velocity, respectively. Furthermore, let

DðnÞ0 ¼ LlocðPðn�1Þ
0 Þ \PðnÞ0 ;

where the action of Lloc on the atom Pðn�1Þ
0 is given by Eq.

(12). The starting point of our flight-generating process is the

polygon Nð0Þ ¼ Dð0Þ0 . An important property of Dð0Þ0 is that it

contains the accelerator mode island Að0Þ0 , with two of its

edges tangent to Að0Þ0 . One of these edges lies along the cell

boundary @P(n), the other along the line y¼ h.

We now proceed to the first step of the iterative process.

Since Nð0Þ � Pð0Þ0 , we can map it forward with Lloc, defining

Nð1Þ ¼ LlocðNð0ÞÞ \Pð1Þ0 ; Wð1Þ ¼ LlocðNð0ÞÞ n Nð1Þ:

Given that LlocðAð0Þ0 Þ ¼ A
ð1Þ
0 , it is easy to see that

Að1Þ0 � Nð1Þ � Dð1Þ0 ; Wð1Þ � Pð0Þ:

We note that, because Lloc is an isometry on each atom,

the disk Að1Þ0 will be tangent to two edges of N(1), and if the

rotation angle is incommensurate with 2p, neither of these

edges lies along @P(1). However, the disk is also tangent to

the edge of D(1) lying along @P(1), and so we have three tan-

gent edges.

It is clear that the step describing the construction, start-

ing with N(0), of N(1) and Wð1Þ, can be iterated arbitrarily

many times, obtaining, after t steps, polygons N(t) and WðtÞ
such that

AðtÞ0 � NðtÞ � DðtÞ0 ; WðtÞ � Pðt�1Þ; (32)

with AðtÞ0 tangent to tþ 2 edges of N(t). Moreover, the

sequence of sets

L�t
locðWðtÞÞ t ¼ 0; 1;…

with L�t
loc implemented by the isometry L

ð0Þ�1
0 � � � � � L

ðt�1Þ�1
0 ,

forms a countable tiling of the halo region Nð0Þ n Að0Þ0 , with the

tth tile constituting the initial domain of flights of length t for

t> 0. The first 8 steps of the process described above are illus-

trated in Fig. 9. The resulting partition of the halo is exhibited

in Fig. 10.

C. Flight generation in the periodic chain model

If we compare the phase portraits of respective rhombi

of the local and PC maps with the same values of g and h (in

the PC model, h is defined in Eq. (22)), we find a striking

similarity everywhere except for the accelerator islands and

their halos. In the PC model, the accelerator islands are

absent, the corresponding region being replaced by spirals of
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small polygonal domains VðtÞ which are embarkation sites

for flights of length t. Thanks to the double periodicity of the

model, the number of such domains is bounded above by the

long period N.

The mechanism for flight generation in the PC model is

essentially the same as in the local model, but without the

constant-radius accelerator islands AðtÞ0 bounding below the

polygons N(t). Setting n¼ n0þ tþ 1, with 0� t��n0� 1,

we can define Nð0Þ ¼ Dðn0þ1Þ
0 and N(t) for larger t by means of

the same iterative process described in Sec. IV B, replacing

the map Lloc by Lpc, and denoting by L
ðnÞ
i the restriction of

Lpc to the atom PðnÞi . To provide a contracting polygonal

bound for the successive NðtÞ0 ; t ¼ 0; 1;…, we rely on the

second-order intertwining polygon,

RðnÞ0 ¼ LpcðDðn�1Þ
0 Þ \PðnÞ0

¼ L
ðn�1Þ
0 � L

ðn�2Þ
0 ðPðn�2Þ

0 Þ \ L
ðn�1Þ
0 ðPðn�1Þ

0 Þ \PðnÞ0 :

Using the expressions (34) for the atom vertices, one

can obtain an exact formula for area of R0(n) as a function of

g,e, and h¼�ne(gþ g�1). As h decreases from unity, the

polygon shifts from a quadrilateral to a triangle at a certain

value. We find the transition point to be

h¼ðg��Þð1�3g2þ3�g��g3Þ�
ffiffiffiffiffiffiffiffiffiffiffi
1þ�2
p

ð2gþ2g3��þ�g4Þ
3g�g3��þ3�g2

¼1þ5g2

3�g2
þ1�16g2�3g4�2g6

gð3�g2Þ2
�þOð�2Þ:

The area of RðnÞ0 continues to decrease beyond that point as a

quadratic function

AreaðRðnÞ0 Þ ¼ cðg; �Þðh� h	Þ2;

where the bifurcation point h* is given by

h	 ¼
ðg� �Þð�gþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

Þ
�þ gð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

� 1Þ
¼ g2 � 3gþ g3

2
�þ Oð�2Þ;

while the coefficient function is

cðg;�Þ¼1�g2þ2�gþð2g2�2�gþ�2g2þ�2Þð
ffiffiffiffiffiffiffiffiffiffiffi
1þ�2
p

�1Þ=�2ffiffiffiffiffiffiffiffiffiffiffi
1þ�2
p

ð1�g2þ2�gÞð2g��þ�g2Þ

¼ 1

2gð1�g2Þþ
ð1�4g2�g4Þ
4g2ð1�g2Þ2

�þOð�2Þ:

For g< 1 and e sufficiently small, the bounding polygon RðnÞ0

contracts monotonically to a point, and the flight generation

process proceeds up to its endpoint at

n	 ¼ � gh	
�ð1þ g2Þ


 �
:

The flight generation process is illustrated in Figure 11.

Here we have chosen g,N, and n for the initial cell to corre-

spond to the local map parameters used in Figures 9 and 10.

The partition of N(0) by the flight domains VðtÞ ¼ L�t
pc

ðWðtÞÞ for n¼ n0 is shown in Figure 12.

Details of the forward spiral are given in Figure 13.

Within A and the surrounding region, the tiles WðtÞ spiral to-

ward the centre of A while maintaining an approximately tan-

gential orientation. These features are progressively distorted

as one approaches the centre. The points inWðtÞ travel from n0

to n0þ t, increasing n by one unit at each step; then they are

ejected from the accelerator mode (apart from finitely many

exceptions, which may occur for small t). Thus the nearer to

the centre is the initial condition, the longer is the flight.

The flight-induced destruction of the h¼ 1 accelerator-

mode island is graphically illustrated by plotting the area of

the polygon N(t) (what remains of the original N(0) after t iter-

ations of the map Lpc). The decay curve for g¼ 1=6,

N¼ 1001 is shown in Figure 14(a). Except very close to the

endpoints, the area of N(t) is always slightly larger than the

FIG. 9. First 8 steps of the iterative process described in the text, for the

local map with g¼ 1=6, h¼ 4=5. The triangles DðtÞ0 are shown in light grey.

The polygons N(t) and W(t) generated at step t are coloured black and grey,

respectively. Superposed on each N(t) is the accelerator island A(t), in white.

FIG. 10. Partition of Dð0Þ0 after 8 iterations. The numbered triangles are the

images under L�t
loc of the WðtÞ, and are the initial domains of the flights of

length t, for t¼ 1,2, … ,8. The accelerator island (grey disk) is inscribed in

the decagon L�8
locðNð8ÞÞ, with all edges tangent.

FIG. 11. First 11 steps of the iterative process described in the text, for the

PC map with g¼ 1=6, N¼ 100, n¼�40,�39,…,�29. The intertwining

domains DðnÞ0 and RðnÞ0 are shown in light and dark grey, respectively. The

polygons N(t) and W(t) generated at step t are depicted in black and white,

respectively.

FIG. 12. Forward flight tiling of Dðn0Þ for g¼ 1=6, N¼ 1001. The numbered

domains VðtÞ are the initial domains of the flights of length t, for t¼ 1,2,….
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area of the accelerator-mode island AðtÞ0 of the local map

with parameters g and h, the latter being given by Eq. (22)

with n¼ n(t)¼ n0þ t. The radius r0 of this island is given by

Eq. (30), and so we obtain for the area

jAðtÞ0 j ¼
p
4
jn0 þ tja�� g2
� �2

: (33)

The ratio of the two areas for our chosen parameters is plot-

ted in Figure 14(b). The data show that that the expression

(33) gives a rather accurate estimate of the measure of the

flights, as long as the region N(t) is not too small.

As N increases, the features ofW become smoother. As

the radial dimension of the tiles decreases, the tangential one

converges to a value that depends only on the radial coordi-

nate. Thus the tiles become segments, orthogonal to a radius

passing through their centre, while the end-points of the seg-

ments arrange themselves along smooth spirals. The distor-

tion appearing for large t are now confined to a decreasing

region near the centre of A.

The flights generated by the mechanism described above

only tell half of the story. Just as the accelerator modes and

their islands in the local model can be traced back to arbitra-

rily large negative times, the flights which accompany them

(or in the PC case, replace them) can also be followed into

the past using the restricted time-reversal involution H0 intro-

duced in Sec. III B.

By periodicity, it is sufficient to consider the flights

which remain in the central H-atom, W(0). The flights of in-

terest all start in the domain D(n0). Although for large N this

polygon is approximately triangular (see Figure 12), it is in

fact an H0-symmetric quadrilateral, with the reflection axis

passing through the vertices (�1=e, 1) and (�b=2, 0).

Consider now a flight originating at a point z 2 Dðn0Þ.
Let us suppose that the length of the flight is t, so that

z 2 VðtÞ ¼ L�t
pc ðWðtÞÞ. In order to keep matters simple, we

assume that z is an interior point of that slice. Applying H0

on z produces a mirror-image point z0 located in V(t0). Unless

z happens to lie on the reflection axis, the points z and z0 will

be distinct, and unless the original slice happens to straddle

the reflection axis, the flight time t0 will not coincide with t.
Thanks to the restricted time-reversal symmetry of Lemma

1, the length- t forward flight originating at z with be the H0

reflection of the incoming flight arriving at z0, while the

length-t0 forward orbit of z0 is the mirror image of the incom-

ing flight arriving at z.

Thus, apart from possible exceptions on the discontinu-

ity set, knowledge of the forward portions of all the flights

passing through D(n0) gives complete information about their

histories for negative times. The latter can be summarized in

a spiral diagram analogous to Figure 13. The numbered sli-

ces for arriving flights will just be the H0 mirror images of

their forward counterparts about the nearly vertical reflection

axis. If the latter is plotted on the same diagram, it is seen to

pass (apparently) through the center of the spiral.

D. Flight generation for the original map

We now return to our original dynamical system, the

return map L induced on the region K by the piecewise isom-

etry F given in Eq. (1). We wish to explore whether the

mechanism for flight generation found for Lpc in the periodic

chain model accurately portrays that found empirically for L.

For the latter, we will restrict ourselves to the parameter

range assumed in Ref. 17, namely

1 � m < k�1=4; 0 < k � 10�4:

In this parameter range, the topology of the map L is consist-

ent with that of the kite chain described in Sec. III. For fixed

m, we satisfy ourselves with perturbative expressions (formal

power series in k, for given m and s¼ tan�1(P=4 �2n

FIG. 13. Enlarged view of the central part of the forward spiral, with slices

numbered according to the lengths of their respective flights.

FIG. 14. (a) Decay of the area of N(t) as

a function of the flight time t, for the per-

iodic chain model. (b) Plot versus t of

the ratio of the area of N(t) to that of the

corresponding local accelerator-mode

island AðtÞ0 , given by Eq. (33).

033117-10 J. H. Lowenstein and F. Vivaldi Chaos 21, 033117 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



sin�1(k=2)), without deriving explicit bounds on the Taylor

remainders. As in Secs. IV A–IV C, we restrict ourselves to

maximal-velocity, right-moving flights. This means that the

parameter n will be assuming the role of �n in the PC model,

and the roles of the atom indices i¼ 0, 1 will be interchanged

correspondingly.

In order to make the comparison with the results for Lpc

(and even Lloc), we will need to define suitable quantities g
and h as functions of m and s. We choose as the “centre” w
of P(n) the midpoint of the G-symmetry line connecting

Q0(n� 1) to Q1(n):

w ¼ 1

2
ðQ0ðn� 1Þ þ Q1ðnÞÞ:

In order to compare with the PC and local coordinates, we

rescale by a factor a which reduces the vertical separation

between the centre and the upper boundary to unity, namely

a�1 ¼ 1� wy ¼
s
2

k� 1þ 2sþ 5s2

8

� �
k2

þ 2þ 11sþ 10s2 þ 25s3

32
k3

� �
þ Oðk4Þ:

We can now determine g as a function of s, and the

inverse formula, by equating the rescaled distance between

the two vertices of P(n) on y¼ 1 and the analogous PC quan-

tity, a¼ gþ g�1:

gþ g�1 ¼ aðQ0ðn� 1Þx � Q0ðnÞxÞ:

After some algebra, this gives

g ¼ s� 1þ 8s2 þ 7s4

4ð1� s2Þ k

þ 19sþ 60s3 þ 126s5 þ 68s7 � 17s9

16ð1� s2Þ3
k2 þ Oðk3Þ;

s ¼ gþ 1þ 8g2 þ 7g4

4ð1� g2Þ k

� g� 113g3 � 98g5 þ 194g7 � 81g11

16ð1� g2Þ4
k2 þ Oðk3Þ:

We define the parameter h to be the vertical displace-

ment of the line connecting P0(m) and P1(m) from the centre.

A straightforward calculation yields

h ¼ s�1 � 2mþ 1þ 2sþ 5s2 � 4s3 � 8ms3

4s2
k

þ 1

48s3
ð3þ 6sþ 81s2 þ 144ms2 þ 48m2s2 þ 42s3

� 88ms3 � 288m2s3 � 128m3s3 � 36s5 � 72ms5Þk2

þ Oðk3Þ:

As in the PC model, we consider the flights initiated in

the triangle

Nð0Þ ¼ DðnÞ1 ¼ LðPðnþ1Þ
1 Þ \PðnÞ1 ;

where n is less than the maximum value n0 for a given m,

namely the value such that

Q0ðn0Þ < P0ðmÞ < Q0ðn0 � 1Þ;

and greater than a certain lower bound to be determined

below. Flights of increasing length are generated by iterative

application of L followed by intersection with the neighbour-

ing atom:

NðtÞ ¼ LðNðt�1ÞÞ \PðnþtÞ
1 :

Again these domains are bounded by the second-order inter-

twining polygons,

RðnÞ1 ¼ LðDðnþ1Þ
1 Þ \PðnÞ1 :

For n sufficiently close to n0 these are quadrilaterals, chang-

ing to triangles when one of the vertices of LðDðnþ1Þ
1 Þ crosses

the line connecting Q0(n) to Q1(n). The crossing occurs at

the solutions of the following equation:

0 ¼ 3� s� 6ms� s2 � 5s3 þ 2ms3

þ k
4s
ð5� 2mþ 4sþ 18msþ 4m2sþ 18s2

þ 40ms2 þ 74s3 þ 32ms3 � 32m2s3 þ 21s4

� 6ms4 þ 70s5 � 18ms5 � 4m2s5Þ:

Re-expressed in terms of g and h, the condition for this to

happen is

h ¼ 1þ 5g2

3� g2
� lðgÞ

g2ð3� g2Þ3ð1� g2Þ
kþ Oðk2Þ;

where

lðgÞ ¼ 24þ 16gþ 25g2 þ 82g3 � 74g4 � 372g5 þ 36g6

� 88g7 � 14g8 þ 100g9 þ 3g10 þ 6g11:

Note the lowest-order agreement with the PC-model result

(29).

As n decreases further, the triangle eventually shrinks to

a point, and this marks the upper bound on the length of

flights in this family. The bifurcation value h* is attained

when the single vertex of LðDðnþ1Þ
1 Þ in PðnÞ1 reaches the

boundary line connecting Q0(n) to Q1(n). This is found to

occur at the vanishing of

0 ¼ 1� 2ms� s3 þ k
4s
ð2þ 6msþ 2s2 þ 12ms2 þ 13s3

þ 18ms3 � 8m2s3 þ 2s4 þ 13s5 þ 4ms5Þ þ Oðk2Þ;

or, in terms of g and h,

h ¼ g2 þ 2þ gþ 3g2 þ 5g3 � 4g4 � 15g5 � g6 � 9g7 þ 2g9

2g2ð1� g2Þ

 kþ Oðk2Þ:

Again we have lowest-order agreement with the PC result,

(29).

For sufficiently small k, say k� 10�4, the lowest-order

terms in above formulae allow us to calculate fairly accu-

rately the lengths of the longest flights for m¼ 1, 2, …. In
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particular, the forward flights originate at n¼ n0 and termi-

nate at n¼ n*, where

n0k �
p
4
� tan�1 1

2mþ 1
; n	k �

p
4
� tan�1 1

2mþ s2
	
;

where s* is the real solution of the cubic equation

s3 þ 2ms� 1 ¼ 0:

The results for m� 10 are listed in Table I.

A significant departure from the PC model (in addition

to the obvious lack of periodicity with respect to the parame-

ter m), is the continuous increase of g as a function of s, for

fixed m. This reflects itself in a variation in rotation number

for the map L as one proceeds from n¼ n0 to n¼ n*. This

can be seen in the tessellation of N(0) generated by the flight-

generating process in the spiral on the left in Figure 15. Care-

ful examination of the picture allows one to see that the rota-

tion angle, as a function of flight length, increases more

rapidly as one spirals inward. In contrast, in the PC model,

the rate of increase appears to be uniform (see Fig. 13).

Another difference between the two models is quite

apparent in Figure 15, namely the assymmetry in the original

model between forward and backward flights from points in

the spiral of maximal size. In the PC model, in contrast, we

have an additional time-reversal symmetry, H0, which leads

to the forward and backward spirals being mirror images of

one another. In the original model, the symmetry is absent

and this can easily be seen in the disparity between the

lengths of the forward and backward flights originating at

mirror-image points. For the parameters of figure, the forward

flights are longer by an average ratio of approximately 4:3.

E. Local trapping and the turnaround phenomenon

The main emphasis of the present investigation has been to

understand how long flights are created and sustained by the adi-

abatic destruction of accelerator-mode islands. The next step,

which is beyond the scope of this work, is to understand in detail

the post-flight behaviour. Here we merely set the stage by

describing some of the preliminary empirical results and intro-

ducing some of the main issues which need to be addressed.

Perhaps the most prominent features of orbits involving

flights are local trapping and the turnaround phenomenon.

Once an orbit abandons a long flight, its fate is found empiri-

cally to be largely determined by the local map acting in a

relatively short sequence of domains P(n), often over a num-

ber of iterations comparable to the duration of the original

flight. This is what we mean by local trapping (see Figure 4

for an example), and it stands in contrast to the diffusive wan-

dering one finds for post-flight behaviour in chaotic mod-

els.18–20 Eventually, the local motion lands in the vicinity of

an accelerator mode and one has the possibility of jumping

onto another long flight. The direction and velocity of the lat-

ter will depend on the identity of the accelerator mode, but, at

least for the maximal-velocity flights emphasised in this arti-

cle, the most likely outcome (by far) is a turnaround, i.e., a

time-reversal of the original flight. This provides a consider-

able enhancement, via a double-turnaround scenario, in the

probability of finding periodic orbits with relatively large sta-

bility disks and relatively short periods.

To illustrate the turnaround phenomenon, we considered

the example of Figure 15, namely k¼ 10�4, m¼ 3, i¼ 1, and

n¼ 6434. We chose a slice V(106), midway into the spiral, and

calculated the partition corresponding to first return to Pð6434Þ
1 .

We found that after 1000 iterations of L, there were 401 dif-

ferent domains which had returned to the original atom, all

via the scenario of local trapping and turnaround. Most of

TABLE I. Lowest-order estimates for the maximum flight lengths for

m¼ 1, 2, …, 10. The lengths are expressed both in terms of the O(k�1)

decrease in n (second column) and the O(k0) horizontal displacement from

start to finish (third column). The latter are computed by taking the differen-

ces of the x-coordinates of corresponding vertices of Pðn	Þ and Pðn0Þ.

m (n0�n*)
 (104k) Q0(n*)�Q0(n0)

1 1039.25 0.0600322

2 440.658 0.0231331

3 225.11 0.0115242

4 134.588 0.00682308

5 89.1005 0.0044956

6 63.2153 0.00318106

7 47.1343 0.00236795

8 36.4780 0.00183061

9 29.0595 0.00145723

10 23.6906 0.00118735

FIG. 15. (Color online) Tessellation of

N(0) produced by the flight-generation

processes for L (on the left) and L�1 (on

the right). In contrast to the forward spi-

ral of the PC model (Figure 13) and its

mirror-image backward partner, these

spirals show evidence of the variation

with n of the rotation number, as well as

the asymmetry in flight length between

forward and backward flights from mir-

ror-image points.
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these ended up in the mirror-image spiral G(N(0)), in the slice

G(V(106)). This remarkable reconstitution of the slice in the G-

symmetric location, brought about by numerous domains with

different return paths and return times, is shown in Figure 16.

To test for periodic orbits and their islands, we calcu-

lated the first-return partition of the largest returning frag-

ment in Figure 16, with a bound of 1200 iterations on the

return time. Figure 17(a) shows the four cases with periods

less than or equal to 1200. The largest island, occupying a

significant fraction of the total area, has a period of 388. Its

orbit, shown in Figure 17(b), consists of a G-symmetric pair

of long flights, punctuated by short trapping episodes (10

iterations at n¼ 6329 and 12 iterations at n¼ 6513).

We are not yet in a position to offer a thoroughly convincing

explanation of the turnaround phenomenon. However, it appears

likely that it is closely related to the dominant role played by

time-reversal symmetric orbits in the phase space. Consider the

slice W(t) which leaves the flight path at step t. It is likely that

most of the area of W(t) is covered by the islands of symmetric

periodic orbits of Lloc which eventually find their way to the mir-

ror-image region, G(W(t)), and then get aboard a return flight

which retraces the path of the original one. This could be the

main ingredient of turnarounds, but obviously much more work

is required to fully understand what is going on.
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APPENDIX: SOME FORMULAE

1. Local map: Atoms

We provide formulae for the atoms Pi,k of Lloc as a list

of vertices, ordered clockwise, with explicit parameter

dependence,

P1;1 ¼
��
�gþ g3 þ 2gh

1þ g2
;
�g2ð�2þ hÞ þ h

1þ g2

�
;

�
�1þ hþ g2ð1þ hÞ

2g
; 1

�
;

�
�1þ hþ g2ð3þ hÞÞ

4g
; 1

��
;

P1;�1 ¼
3þ g2ð�1þ hÞ þ h

4g
;�1

� �
;

1� 2g2ð�2þ hÞ þ g4ð�1þ hÞ þ h

2ðgþ g3Þ ;
g2ð�2þ hÞ � h

1þ g2

� �
;

1

g
;�1

� �� �
;

P1;0 ¼
1þ g2ð�1þ hÞ þ h

2g
;�1

� �
;
�gþ g3 þ 2gh

1þ g2
;
�g2ð�2þ hÞ þ h

1þ g2

� �
;

�
�1þ hþ g2ð3þ hÞ

4g
; 1

� �
; ðg; 1Þ;


 1� 2g2ð�2þ hÞ þ g4ð�1þ hÞ þ h

2ðgþ g3Þ ;
g2ð�2þ hÞ � h

1þ g2

� �
;

3þ g2ð�1þ hÞ þ h

4g
;�1

� ��
;

FIG. 16. (a) First-return (to Pð6434Þ
1 ) par-

tition of V(106). The domains which have

returned after 1000 iterations or less are

shown in grey. Their return-map images,

located in the G-reflected spiral, are

shown in (b).

FIG. 17. (Color online) (a) First-return

partition of the largest domain in Figure

16, showing the four islands associated

with periodic orbits of period less than

1200. The n versus t itinerary of the pe-

riod-388 island (the largest one) is plot-

ted in (b).
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P0;1 ¼
�1þ hþ g4ð1þ hÞ � 2g2ð2þ hÞ

2ðgþ g3Þ ;
�hþ g2ð2þ hÞ

1þ g2

� �
; � 1

g
; 1

� �
;
�3þ hþ g2ð1þ hÞ

4g
; 1

� �� �
;

P0;�1 ¼
1þ g2ð�3þ hÞ þ h

4g
;�1

� �
;

g� g3 þ 2gh

1þ g2
;
h� g2ð2þ hÞ

1þ g2

� �
;

1þ g2ð�1þ hÞ þ h

2g
;�1

� �� �
;

P0;0 ¼ ð�g;�1Þ; �1þ hþ g4ð1þ hÞ � 2g2ð2þ hÞ
2ðgþ g3Þ ;

�hþ g2ð2þ hÞ
1þ g2

� �
;

�
�3þ hþ g2ð1þ hÞ

4g
; 1

� �
;


 �1þ hþ g2ð1þ hÞ
2g

; 1

� �
;

g� g3 þ 2gh

1þ g2
;
h� g2ð2þ hÞ

1þ g2

� �
;

1þ g2ð�3þ hÞ þ h

4g
;�1

� ��
:

2. Local map: Triangle D

We list the vertices Di,j of the triangle D ¼D0.

D1;2 ¼ � 1þ g2 þ h� g2h

2g
; h

� �
;

D2;3 ¼ � 1þ g2 � 3g2hþ g4h

2gð1� g2Þ ; h

� �
;

D1;3 ¼
�1þ hþ g4ð1þ hÞ � 2g2ð2þ hÞ

2gð1þ g2Þ ;
�hþ g2ð2þ hÞ

1þ g2

� �
:

3. Periodic chain map: Atoms

We provide formulae for the atoms PðnÞi of Lpc as a list of vertices, ordered clockwise.

PðnÞ0 ¼
Q0ðn� 1Þ;R1ðnÞ;R0ðnÞ;Q1ðnÞ;Q1ðn� 1Þ½ � if ðnþðN� 1Þ=2Þ � 0ðmod NÞ
Q1ðn� 1Þ;R1ðnÞ;R0ðnÞ½ � if ðn� ðN � 1Þ=2Þ � 0ðmod NÞ
Q0ðn� 1Þ;R1ðnÞ;R0ðnÞ;Q1ðn� 1Þ½ � otherwise

8><
>: (34)

PðnÞ1 ¼
Q0ðnÞ;R0ðnÞ;R1ðnÞ½ � if nþðN� 1Þ=2 � 0ðmod NÞ
Q0ðnÞ;Q1ðnÞ;R0ðnÞ;R1ðnÞ;Q0ðn� 1Þ½ � if n�ðN� 1Þ=2 � 0ðmod NÞ
Q0ðnÞ;Q1ðnÞ;R0ðnÞ;R1ðnÞ½ � otherwise

8><
>: ;

where

Q0ðnÞ ¼ ðgþ na; 1Þ; Q1ðnÞ ¼ ð1=gþ na;�1Þ;
R0ðnÞ ¼ GðR00ðnÞÞ; R1ðnÞ ¼ GðR01ðnÞÞ:

The quantities R01;2 are defined as follows. If

nþ (N� 1)=2 : 0 (mod N), then R00ðnÞ ¼ ðmðnÞb� 1=�; 1Þ;
otherwise R00 is the intersection of two segments, given by

fR00ðnÞg ¼ Q0ðn� 1Þ;Q1ðn� 1Þ½ �
\ ðmðnÞb� 1=�; 1Þ; ðmðnÞbþ 1=�;�1Þ½ �:

Likewise, if n� (N� 1)=2 : 0(mod N), then R01ðnÞ
¼ ðmðnÞbþ 1=�;�1Þ; otherwise

fR01ðnÞg ¼ Q0ðnÞ;Q1ðnÞ½ �
\ ðmðnÞb� 1=�; 1Þ; ðmðnÞbþ 1=�;�1Þ½ �:

4. Periodic chain map: Triangle D

We list the vertices Di,j of the triangle D for the periodic

chain map. Let H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

. We have
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D1;2 ¼
�þ �g2 þ 2gh

�ð�� 2g� �g2Þ ;
�þ �g2 þ 2gh

2gþ �ð�1þ g2Þ

� �
;

D2;3 ¼ ½ð��H� g� �2gþHg� �Hg2 � g3 � �2g3 þHg3

þ �h� 3ghþHgh� 3�g2hþ g3hþHg3hÞ=ð�ð��
þ 2g� 2�2gþ 6�g2 � 2g3 þ 2�2g3 � �g4ÞÞ;
ð��H� g� �2gþHg� �Hg2 � g3 � �2g3 þHg3

þ �h� 3ghþHgh� 3�g2hþ g3hþHg3hÞ=
ð�� 2gþ 2�2g� 6�g2 þ 2g3 � 2�2g3 þ �g4Þ�;

D1;3 ¼ ½ð�� 2�H� 2gþ 2�2gþ 2Hg� 6�g2 þ 2�Hg2

þ 2g3 � 2�2g3 � 2Hg3 þ �g4 þ 2�h� 4gh

þ 2Hgh� 2�g2h� 2Hg3hÞ=ð�ð1þ g2Þð��þ 2g

þ �g2ÞÞ; ð�2 � 4�gþ 4eHgþ 4g2 � 2�2g2

� 4Hg2 þ 4�g3 þ �2g4 � 2�ghþ 4g2h� 4Hg2h

þ 2�g3hÞ=ð�ð1þ g2Þð��þ 2gþ �g2ÞÞ�:
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