
DISCRETE RESONANCES

FRANCO VIVALDI

ABSTRACT. The concept of resonance has been instrumental to the study of Hamiltonian systems with
divided phase space. One can also define such systems over discrete spaces, which have a finite or
countable number of points, but in this new setting the notion of resonance must be re-considered from
scratch. I review some recent developments in the area of arithmetic dynamics which outline some
salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline
the difficulties that emerge in their analysis.

Dedicated to Professor Hao Bailin, on the occasion of his 80th birthday.

1. INTRODUCTION

In the early developments of modern dynamics, the pioneering work of B. V. Chirikov achieved a
description of generic Hamiltonian systems —neither integrable nor ergodic— in terms of interactions
between nonlinear resonances [8]. The prototype model of a nonlinear resonance is the set of librations
of a pendulum. In appropriate units, Newton’s equation of motion reads ẍ =−sin(x), where x is the
angular displacement from the stable equilibrium. Rewriting this differential equation in Hamilton’s
form

(1) (ẋ, ẏ) = (y,−sin(x)),

we obtain a smooth vector field on an infinite cylinder. The energy H(x,y) = y2/2− cos(x) attains
a minimum at the stable equilibrium: H(0,0) = −1. As the amplitude of the oscillations increases,
their frequency decreases monotonically, reaching zero at the separatrices H(x,y) = 1. A nonlinear
resonance is the domain bounded by the separatrices: {(x,y) : H(x,y) < 1} (see figure 1).

We want to construct discrete versions of systems such as (1), and the first stage of this process
consists of discretising time. There are various ways of doing this. One option is to consider the time-
advance map (x(t),y(t)) 7→ (x(t + h),y(t + h)), which is area-preserving for all h, since the vector
field (1) has zero divergence. However, transforming a flow into a map in this way does not produce
new dynamics.

Far more interesting is the time-discretisation associated with numerical integration algorithms,
which introduces a perturbation of the original system. For our purpose it suffices to consider Euler’s
method, a basic numerical integration scheme which performs an approximate time-h advance map of
the solutions of (1), with an error of order O(h2). Euler’s method can be made area-preserving (i.e.,
symplectic) by adding a correction of order h2:

(2) xk+1 = xk +hyk−h2 sin(xk) = xk +hyk+1
yk+1 = yk−hsin(xk).

One verifies that the Jacobian matrix of this map has unit determinant.
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Figure 1: Orbits of the pendulum Hamiltonian, with a nonlinear resonance.

To bring the effect of time-discretisation to the foreground, we push the time-step h beyond a
legitimate range, choosing h = 0.9, say (figure 2). The phase portrait now shows familiar features
of near-integrable symplectic maps. This is no coincidence: the mapping (2) is conjugate to the
celebrated Chirikov-Taylor’s standard mapping [27, section 3.1]

(3)
pt+1 = pt + ε sin(qt)
qt+1 = qt + pt+1

via the coordinate change q =−x, p = hy, together with the reparametrization ε = h2. (This conjugacy
breaks down at h = 0, where Euler’s map reduces to the identity, while the standard map is a shear.)

The mapping (2) commutes with translations by 2π/h in the y-direction, which makes the phase
portrait doubly periodic. As a result, in addition to the original fixed points of the system (1) —the
stable and unstable equilibria of the pendulum— an infinite sequence of spurious fixed points appears,
in correspondence of the values of y for which the frequency of rotation of the pendulum is an integer
multiple of the integration step. This gives rise to an infinite sequence of nonlinear resonances, evenly
spaced along the cylinder at position y = 2nπ/h, n ∈ Z.

For small h, these resonances lie far apart from each other. Their mutual interaction is very small,
but it does produces a dense set of secondary resonances, whose frequencies are rational multiples
of the integration step. The new resonances appear near to every point in phase space, creating is-
land chains and stochastic layers, which alter dramatically the small-scale structure of regular orbits.
Increasing the time-step h has the effect of bringing the primary resonances closer together, and for
sufficiently large h, exponential instability develops on a large scale. Chirikov characterised the criti-
cal h-value in terms of the overlap of the primary resonances.

While we recognise that time discretisation may give rise to new and interesting dynamics, our
job is still incomplete. We must now embark in a second —and more difficult— discretisation pro-
cess: discretizing space. This process will bring us closer to computer representations of dynamical
systems.
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Figure 2: Phase portrait of the area-preserving map (2), with h = 0.9, showing a mixture of regular orbits,
island chains, and chaotic orbits.

The study of Hamiltonian systems with discrete phase space has attracted the attention of re-
searchers for many years. These works however, do not form a coherent body of research, let alone a
proper mathematical theory. Following the pioneering work of Rannou [36], space discretisation has
been considered for the most varied reasons: to achieve invertibility in a delicate numerical experiment
[21], to mimic quantum effects in classical systems [15], to characterize periodic orbits in chaotic sys-
tems arithmetically [35, 9, 17, 32], to explore the structure of numerical orbits [22, 42, 18, 45, 28, 33].

In all Hamiltonian systems mentioned above, space discretisation is performed in such a way as to
preserve invertibility. If this is achieved by merely restricting an invertible system to a discrete set,
then no spurious perturbation accompanies space discretisation. For example, for algebraic symplectic
maps with rational coefficients, the co-ordinates may be restricted to rational or algebraic numbers.
(Most of the research in this area is devoted to dissipative systems, and we shall not deal with it for
reasons of space. For background reference, see [43].) More often however, the space is discretised
by a truncation process, which acts as a small perturbation of the original system; in the invertible
case, such a perturbation will generate fluctuations without dissipation.

On a finite phase space all orbits are periodic; otherwise some orbits may escape to infinity in both
time directions. The problem of stability under space discretisation now takes centre stage, particu-
larly if the continuum system is stable, as it is in a resonance. The main difficulty originates from the
fact that, in the limit of vanishing discretisation length, round-off perturbations are not smooth. So,
even though these perturbations are still canonical, standard perturbation methods are not applicable.

We remark that the aforementioned scenario is not relevant to computations with floating-point
arithmetic, which is the norm in numerical experiments. The floating-point numbers form a peculiar
subset of the rationals, exponentially clustered about the origin, and this distribution is incompatible
with the invariant uniform distribution (Lebesgue measure) of a symplectic map. This discrepancy
results in large-scale irreversibility: all discrete orbits eventually reach a small invariant subset of
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the set of floating-point numbers, which features an approximate uniform distribution [18] (see also
[10, 6, 48, 23]).

Before attempting to construct a mathematical theory of such a complex dynamics, there are sim-
pler problems to be considered. The first problem is uniform space discretisation of linear planar
rotations —the time-advance maps of the harmonic oscillator. We force the system onto a lattice by
a round-off procedure, and since the continuum dynamics is regular and well-understood, the effect
of discretisation can be isolated from other dynamical phenomena. This problem, which has attracted
considerable attention, is far from trivial [6, 45, 7, 48, 23, 28, 29, 30, 13, 12, 47, 26, 37, 38].

An alternative approach is to consider an affine twist map of a discrete space, and then add to
it a suitable (piecewise) affine perturbation, which leaves such a space invariant without resorting
to round-off. For example, the standard map (3) with ε = 0 leaves all rational lattices on the two-
dimensional torus invariant. One must then choose functions ε f (q) which preserve such lattices. This
approach, which has been much exploited for maps of the continuum, has received remarkably little
attention in the discrete case [50].

A third method for space discretisation is based on repeated applications of a simple scattering
mechanism, which appears in outer billiards of convex polygons and their generalisations [40, 39, 38].
We consider a bundle of parallel rays which cross a line l on the plane, and which are refracted by it
while remaining parallel (figure 3, left). The dynamics along rays is generated by a piecewise-constant
velocity field v which assumes the values v1 and v2 on the two half-planes determined by l. The orbits
of the flow ż = v(z) are parallel rays joined at l.

Next we perturb the flow by turning it into a map:

(4) Fλ : R2→ R2 Fλ (z) = z+λv(z),

where λ > 0 is the perturbation parameter. The map Fλ agrees with the time-λ advance map of the
flow, except in the strip Σ bounded by the lines l and F−1

λ
(l). Upon crossing the line l, an orbit of

Figure 3: Rays scattered by a surface l. Left: the unperturbed flow. Right: a perturbed orbit of the
map Fλ in (4) (black dots), which departs from the unperturbed orbit after crossing the strip Σ (dashed
line).
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Figure 4: Schematic representation of the linked strip map construction, where the size of the per-
turbation is determined by the width of the strips. Left: outer billiard of a polygon. Right: the near
rational discretised rotations described in section 5.

Fλ will jump from an orbit of the flow to a nearby orbit, which we interpret as a perturbation of the
original motion (figure 3, right). The map Fλ is area-preserving, and if the orthogonal components
of the incoming and outgoing fields are the same, then Fλ is invertible. Furthermore, any lattice
generated by v1 and v2 will be Fλ -invariant, and hence this construction leads naturally to dynamics
on lattices.

By varying the parameter λ , we can adjust the width of Σ, hence the size of the perturbation. With
a suitable arrangement of scattering lines and fields, it is then possible to construct an interesting class
of dynamical systems on lattices, which are perturbations of flows on polygons, and of which the outer
billiards are the best known examples (figure 4). These dynamical systems will be called linked strip
maps.

The purpose of this paper is to survey works on regular motions (rotations) in two-dimensional
discrete spaces [45, 28, 29, 50, 30, 13, 12, 47, 26, 37, 38], underlying the mathematical tools needed
for their analysis. These spaces will be embedded in smooth manifolds, and since this can be done in
many ways, the choice of the manifold will be decisive. In section 2 we introduce a spatial discreti-
sation of a family of linear elliptic maps, which results in weakly nonlinear systems on lattices. The
analysis splits into three cases. i) Rational rotations (section 3), where the embedding space is the
two-torus, and the dynamics is a piecewise isometry (zero entropy). ii) Irrational rotations (section 4),
where the embedding space is the ring of p-adic integers and the dynamics is Bernoulli (positive en-
tropy). iii) A near-rational case (section 5), where the embedding space is the plane, and the dynamics
is given by linked strip maps. Finally, in section 6 we describe a parametrised family of perturbed
twist maps on a lattice, whose Poincaré map is an interval-exchange transformation of the integers,
with infinitely many intervals.

All dynamical systems mentioned above are found to be globally stable, even though this result
has been established only in few cases. Typically, on a discrete space there are no invariant ‘circles’
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to confine orbits, standard Hamiltonian perturbation methods do not apply, and the mechanisms that
induce stability in such systems seem to be as varied as the systems themselves.

2. A MODEL FOR DISCRETE ELLIPTIC MOTIONS

A prototype for discrete linear elliptic motions is the lattice map

(5) Φ : Z2 7→ Z2 (x,y) 7→ (bλxc− y, x) λ = 2cos(2πν)

where b·c is the floor function, the largest integer not exceeding its argument [45, 28, 29, 30, 13, 12,
47, 26].

One verifies that Φ is invertible. Without the floor function, equation (5) represents a one-parameter
family of linear maps of the plane, conjugate to rotation by the angle 2πν . These maps are represented
by the family of matrices

(6) C =
(

λ −1
1 0

)
|λ |< 2

and we shall use the same symbol C for both the matrix and the planar map represented by it. The
floor function models the effect of round-off, pushing the point (λx− y,x) to the nearest lattice point
on the left. This procedure is arithmetically nicer than the more orthodox rounding to the nearest
lattice point, and it still produces a similarly rich dynamics. The lattice map should be regarded as a
discrete approximation of the planar map: the discretisation length is fixed, and the limit of vanishing
discretisation corresponds to motions at infinity.

The following unsolved question [1, 46] distils the difficulties encountered in the analysis of this
model.1

Conjecture 1. For all real λ with |λ |< 2, all orbits of Φ are periodic.

Due to invertibility, periodicity is equivalent to boundedness. This conjecture holds trivially for
λ = 0,±1, the parameter values for which the map Φ is of finite order. Beyond this, the boundedness
of all round-off orbits has been proved for only eight values of λ —see section 3.

The parameter of the map (5) may be chosen to be either the trace λ or the rotation number ν . Apart
from trivial exceptions, a rational value of λ corresponds to an irrational value of ν , and vice-versa
[31, chapter 2]. We shall consider three natural spaces in which to embed the lattice Z2, corresponding,
respectively, to rational values of ν , rational values of λ , and a particular range of near-integer values
of λ . The resulting dynamics are very different in these cases, and so are the mathematical tools
needed to study them.

3. RATIONAL ROTATIONS AND PIECEWISE ISOMETRIES

If in equation (5) we let ν = p/q, a rational number, then the qth iterate of the matrix (6) —the
linear map without round-off— is the identity. The qth iterate of the map (5) will then be ‘close to the
identity’, and it makes sense to consider the discrete vector field

(7) v(z) = Φ
q(z)− z z = (x,y) ∈ Z2

which can be shown to be uniformly bounded, that is, to assume only finitely many values. This
construction may be seen as a discrete analogue of the vector field approximations of perturbed area-
preserving diffeomorphisms at resonance [3, section 6.2.2.]. Some integral curves of this vector field
are displayed in figure 5. It is plain that the effect of round-off cannot be described as the addition
of deterministic noise to the system. The round-off perturbation rather generates a highly organised

1A related general conjecture on the boundedness of discretised invertible rotations was first formulated in [6].



DISCRETE RESONANCES 7

(self-similar) fractal structure, which displays rotations about secondary centres —a skeletal form of
‘island chains’.

Figure 5: Integral curves of the discrete vector field (7) on the first quadrant of the lattice Z2, for the parameter
ν = 1/5. The dots represent fixed points of the map Φ5. The other curves form polygons with an increasing
number of sides —a sort of surrogate island chains— which suggest successive approximations to a fractal
Koch snowflake.

Arithmetically, the resonant condition ν ∈ Q implies that λ is an algebraic integer —a root of a
monic polynomial with integer coefficients. The degree of such a polynomial is φ(q)/2, where φ is
Euler’s function [24, section 5.5]. The simplest scenario occurs for φ(q) = 4, corresponding to the
following values of ν :

(8) ν =
1
5
,

2
5
,

1
8
,

3
8
,

1
10

,
3
10

,
1
12

,
5
12

.

(Figure 5 corresponds to the first entry in the list.) For these values, the minimal polynomial of λ

is quadratic, and we shall denote by λ̄ the algebraic conjugate of λ (the other root of the minimal
polynomial of λ ).

To study the lattice dynamics for these parameter values, we introduce the fundamental domain
Ω = [0,1)2 of the torus R2/Z2, and consider the torus map

(9) Φ̄ : Ω→Ω ζ 7→ (C̄ ·ζ −Z2)∩Ω

where C̄ is the algebraic conjugate matrix of the matrix C of (6). We have the following result [26,
Theorem 1]:

Theorem 1. For all values of ν listed in (8), the mapping Φ is dual to the mapping Φ̄, in the sense
that there is a uniform embedding

E : Z2→Ω (x,y) 7→ (x−m0/λ ,y−m1/λ )

where m0 and m1 are integers uniquely determined by the condition E (x,y) ∈Ω.
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The torus map (9) is linearly conjugate to a piecewise isometry. Namely, there is a finite partition
Ω = ∪iΩi into convex polygons Ωi such that over each Ωi the map Φ̄ is the composition of a rotation
and an i-dependent translation.

This representation allows one to prove the following result.

Theorem 2. For all values of ν listed in (8), all orbits of the map Φ are periodic.

The case ν = 1/5, corresponding to λ = (1−
√

5)/2 was established in [28], with computer as-
sistance. Similar techniques were used to extend the result to the other parameter values in (8), for a
set of initial conditions having full density [26]. An analytical proof of the conjecture for the eight
parameters (8) and all initial conditions was eventually given in [2]. In all cases, periodicity was
established using renormalisation techniques.

For any other rational value of ν , there is a similar embedding in piecewise isometries of a higher-
dimensional tori [26]. These systems are still unexplored, even in the cubic case.

4. IRRATIONAL ROTATIONS AND p-ADIC NUMBERS

If the rotation number ν is irrational, then the orbits of the linear map C are dense on invariant
ellipses. In this regime, the round-off perturbation introduces a form of small-amplitude deterministic
randomness, as illustrated in figure 6. In all experiments performed to date, all orbits have been found
to be periodic, arranged along the invariant curves of the integrable system. However, their period as
a function of the distance from the origin (inverse discretisation length) shows very large fluctuations,
which are the root cause of the difficulties in proving the periodicity conjecture.

Figure 6: Orbits of the mapping Φ on the first quadrant of Z2. The parameter is λ = 1/2, corresponding to an
irrational rotation number ν . All displayed orbits are periodic, and they are arranged along the invariant ellipses
of the linear map C.
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On first inspection, the origin of these fluctuations is unclear. One would expect some form of
exponential instability, but the standard indicators of chaotic behaviour give negative reading here.
Moreover, even for time intervals which are short compared to the orbital period, the distance between
points of initially close orbits does not show any sign of exponential growth. Likewise, the number of
periodic orbits with period less than T grows very slowly with T —certainly non exponentially.

It turns out that the round-off fluctuations are indeed the result of deterministic chaos, more pre-
cisely, they are a feature of periodic orbits of a smooth system with positive entropy. However, to see
this it is necessary to look elsewhere, and embed the lattice Z2 in an appropriate space.

The essence of this phenomenon is already in full view for a special set of rational values of the
parameter λ , namely

(10) λ =
q
pn p prime |q|< 2pn.

Since λ is irrational but not an integer, it follows that the rotation number ν is irrational [31, chapter
2].

It turns out that for this choice of parameters the map Φ admits an embedding into an expanding
map of the ring of p-adic integers Zp, and the mapping Φ∗, which is conjugate to Φ on the image of
Z2 in Zp, is Bernoulli.

The new phase space Zp consists of all expressions of the type

(11) χ =
∞

∑
k=m

ck pk ck ∈ {0, . . . , p−1}, m > 0, cm 6= 0

which converge with respect to the p-adic absolute value

(12) |χ|p =
1
pm .

The function | · |p assumes discrete values, and it satisfies the ultrametric inequality

(13) |χ + χ
′|p 6 max(|χ|p, |χ ′|p).

With the topology induced by | · |p, the set Zp is a Cantor set. For background bibliography on p-
adics, see [20]. Research is the area of p-adic dynamics is well-developed: see [5] for an accessible
introduction, and [13, 12, 47, 34, 49] for some relevant literature.

When λ = q/pn in (5), there are pn possible values for the round-off kick. Accordingly, we define
a symbolic dynamics on pn symbols as follows

(14) c : Z2→{0, . . . , pn−1} (x,y) 7→ x(mod pn).

The next results were proved in [13]. The first one characterizes the cylinder sets of the symbolic
dynamics, namely the set of lattice points whose symbol sequence begins with a specified code of
length k, which we call a k-code.

Lemma 3. There exists a nested sequence of lattices

L1 ⊃ L2 ⊃ L3 ⊃ ·· ·

with |Z2/Lk| = pnk, with the property that two points in Z2 have the same k-code if and only if they
are congruent modulo Lk.
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This peculiar notion of closeness —congruence modulo a lattice with a large fundamental domain—
is the signature of a non-archimedean metric (12). Note that all finite codes of the symbolic dynamics
(14) are represented by orbits in Z2. Furthermore, defining the density D(X) of a set X ⊂ Z2 as

(15) D(X) = lim
N→∞

1
(2N)2 #{(x,y) ∈ X : max(|x|, |y|) < N}

we see that any k-cylinder set in Z2 has density p−nk in Zp.
To justify the appearance of the lattices Lk we consider the modular identity

(16) f (x) = x2−qx+ p2n ≡ x(x−q)(mod p).

The polynomial f (x) is irreducible in Q, having negative discriminant. Moreover, the factors of f (x)
modulo p are distinct, because p and q are co-prime. Let α be a root of f (x) [thus α is a scaled
eigenvalue of the matrix C in (6)], and let us consider the ring

Z[α] = {m+nα : m,n ∈ Z}.

The factorization (16) implies that the prime p splits in Z[α] into the product of two distinct prime
ideals: pZ[α] = PP. Recall that an ideal in a ring is an additive group closed under multiplication by
ring elements. Geometrically, these ideals are two-dimensional lattices, and the product PP alluded
above is defined as the set of all finite sums π1π1 + · · ·+πsπs with πi ∈ P and π j ∈ P [31, chapter 3].

The next result shows that the discrete phase space Z2, as well as its sub-lattices Lk, are in fact more
than two-dimensional lattices.

Lemma 4. The embedding

L1 : Z2→ Z[α] (x,y) 7→ px−αy

defines an isomorphism Z2 ∼ Pn of Z-modules such that, for all k > 1, we have Lk ∼ Pn(k+1).

This result provides the discrete phase space Z2 of the round-off map Φ with a multiplicative
structure, much like going from R2 to C. Now, for all positive k, the finite ring Z[α]/Pk is isomorphic
to Z/pkZ. Under this isomorphism, an element ζ in Z[α] maps to a unique residue class modulo pk,
and the sequence of these residue classes converges to a p-adic number. In particular, the complex
roots of f (x) correspond to the roots of f (x) in Zp. We denote the latter by ϕ and ϕ; they are identified
as follows (cf. (16)):

(17) ϕ ≡ 0(mod p) ϕ ≡ q(mod p).

Because q is co-prime to p, we have that |ϕ|p = 1, that is, ϕ belongs to the p-adic unit circle (in
arithmetical parlance, ϕ is a p-adic unit), while |ϕ|p < 1. The computation of ϕ and ϕ is performed
efficiently with the p-adic Newton’s method, which is super-convergent [41, chapter 2]. From equa-
tions (17) we see that the initial condition for the Newton recursive sequence ϕk → ϕ is ϕ0 = 0,
whereas ϕ0 = q.

Identifying α with ϕ defines an embedding L2 of Z[α] into the ring Zp of p-adic integers:

L2 : Z[α]→ Zp x+αy 7→ x+ϕy.

Composing L1 and L2 and scaling gives us the desired embedding.
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Theorem 5. The dense embedding

(18) L : Z2 7→ Zp (x,y) 7→ 1
p
L2(L1(x,y)) = x− ϕ

pn y

has the property that the mapping Φ∗ = L ◦Φ◦L −1 can be extended continuously from L (Z2) to
the whole of Zp, giving

(19) χt+1 = Φ
∗(χt) = σ

n(ϕ χt)

where ϕ = L (q, pn) is a p-adic unit and σ is the shift mapping.

The shift σ is defined as its archimedean counterpart; if χ = c0 + c1 p+ c2 p2 + · · · , then

(20) σ(χ) = c1 + c2 p+ c3 p2 + · · · .
The p-adic shift mapping has been studied in [44, 4, 49].

The above result represents the round-off problem on Z2 as a sub-system of an expanding map over
the p-adics, which preserves the standard probability measure on Zp (the additive Haar measure),
obtained by assigning to each residue class modulo pk the measure p−k. This is just the natural
measure on Zp as a Cantor set.

The map Φ∗ has a complete symbolic dynamics over pn symbols, and a dense set of unstable
periodic orbits. All t-cycles of Φ∗ have multiplier p−nt . It is possible to show that all periodic points
are p-adic integers, and that their closure is the p-adic unit disc {χ ∈ Zp : |χ|p ≤ 1}. This system
calls to mind the dynamical system given by multiplication by pn on the circle: x 7→ pnx(mod 1) [25,
section 1.7]. In both maps, the positive metric entropy of the embedding dynamical system provides an
essential substrate for the existence of irregular motion on lattices. (See [19] for a friendly introduction
to the question of algorithmic complexity in this shift system, and [16] for a parallel with quantum
dynamics.)

The symbol sequences generated by the round-off orbits are good pseudo-random sequences (a
comparison with [49] is instructive). Some rigorous results will be found in [47], most notably a
central limit theorem governing the departure of round-off orbits from exact orbits. However, as
is often the case in this type of problems, the most interesting phenomena are difficult to analyse.
Experimentally, the period of the orbits is found to grow —on average— proportionally to the height
of the initial condition (the ‘seed’ of the pseudo-random sequence), while displaying at the same time
huge fluctuations. The latter suggest that the period function is hard to compute —a good candidate for
a non-polynomial time problem. The symbol sequences corresponding to λ = 1/2 have been tested at
Hewlett Packard [14]. They feature good pseudo-randomness for short times, and faint correlations at
certain larger times, related to the denominators of good rational approximants of the rotation number.

5. NEAR-RATIONAL ROTATIONS AND LINKED STRIP MAPS

The third regime of discretised rotations Φ to be considered is the limit λ → 0, corresponding to
ν → 1/4 in (5). The asymptotic dynamics provides an example of the linked strip maps construction
discussed in the introduction. At λ = 0 the dynamics is trivial: there is no round-off and the mapping
has order four. This time the natural embedding of Z2 is the plane R2, and the dynamics for λ → 0
is best described as a perturbation of a weakly nonlinear piecewise-smooth integrable Hamiltonian
system [see (24) below]. For this reason, this limit will be referred to as the integrable limit [37, 38].

As λ approaches 0, the iterated map F4 is close to the identity, suggesting the introduction of a
discrete vector field on the scaled lattice (λZ)2:

(21) vλ (z) = F4
λ
(z)− z, Fλ (z) = λF(z/λ ) λ > 0
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Figure 7: Some periodic orbits of the rescaled map Fλ for λ = 1/25 (left) and λ = 1/83 (right). The
view is restricted to the first quadrant. The discrete island chains visible on the left are not visible on
the right due to their small size. It is apparent that some scaling is necessary for convergence to an
integrable system.

where Fλ : (λZ)2 → (λZ)2 is a scaled version of (5). Unlike in (7), the field vλ is not bounded; as
λ → 0, this field becomes piecewise-constant, albeit in a non-uniform manner. The domains over
which the vector field is constant converge to squares, bounded by an infinite array of orthogonal
lines (figure 7). The phase portrait suggests a coarse version of divided phase space, with small-scale
features receding to the background as λ → 0.

More precisely, over any bounded domain of the plane, the integrable Hamiltonian vector field w

(22) w : R2→ Z2 w(x,y) = (2byc+1,−(2bxc+1)).

is such that λw agrees with vλ for all sufficiently small λ , apart from regions of vanishing total
measure.

The domains of constant w are translated unit squares (called boxes)

(23) Bm,n = (m,n)+ [0,1)2 m,n ∈ Z

and the field across adjacent boxes is transversal. The corresponding Hamiltonian H is given by

(24) H : R2 → R H (x,y) = P(x)+P(y),

where P is the piecewise-affine function

(25) P : R→ R P(x) = bxc2 +(2bxc+1){x},
and {x} denotes the fractional part of x. The level sets of the Hamiltonian H are convex polygons,
with an increasing number of sides: near the origin they are squares, while at infinity they approach
circles. For small λ , the fourth iterate of Fλ is equal to the time-λ advance map of the flow along
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the edges of the polygons. The perturbation occurs near the vertices, where the orbits of H are not
differentiable.

Thus, in the integrable limit, the rescaled map Fλ is a perturbation of an integrable Hamiltonian
system, but the integrable system is no longer a rotation, and the perturbation is no longer caused by
round-off. The perturbation mechanism is of the linked strip maps type (see figure 4, right), which
resembles the ‘pinwheel map’ introduced by Schwartz as a generalisation of outer billiards of convex
polygons [40, 39] (figure 4, left). Note that as the distance from the origin increases, the number of
strips encountered by individual orbits increases without bounds. As a result, the integrable system is
nonlinear, i.e., its time-advance map satisfies a twist condition.

More precisely, the level curves of H passing through integer points (m,n) ∈ Z2 subdivide the
plane into annular regions called polygon classes, with all polygons in a class having the same number
of vertices. Each polygon class is indexed by the value e ∈ E of H at its inner boundary, where E
is the set of integers representable as the sum of two squares (see [24, chapter XX]). Along the main
diagonal (the symmetry axis of Fλ ) we identify a rectangular strip Xe contained within the class, and
whose width is equal to the magnitude of the vector field (figure 8). The strip Xe is crossed repeatedly
by all orbits in that region, and serves as Poincaré surface of section for Fλ . Topologically, the set Xe
is a cylinder, since opposite sides are identified via the action of Fλ .

As λ → 0, the width of the strip Xe also goes to zero. By mapping the strip Xe to the infinite
cylinder S1×R, we obtain the following characterisation of the unperturbed Poincaré return map of
each polygon class [38].

X

1 2 3

1

2

3

Figure 8: Surface of section for a polygon class.

Theorem 6. Associated with each polygon class, indexed by e ∈ E , there is a change of coordinates
which conjugates the unperturbed return map to Xe to the linear twist map T e, given by

(26) T e : X→ X T e(θ ,ρ) = (θ +κρ,ρ) ,

where X is the unit cylinder:
X = S1×R,

and κ = κ(e) is the twist. Furthermore, as e→ ∞, the limiting behaviour of κ(e) is singular:

κ(e)→
{

4 {
√

e}= 0
0 otherwise.



14 FRANCO VIVALDI

Figure 9: Orbits of the surface of section map on Xe in the cylindrical co-ordinates (θ ,ρ) of equation
(26). The width of the cylinder consists of approximately 500 lattice sites. Left: Resonances for
e = 160234≈ 400.32 and λ ≈ 3.5×10−9. Right: Pseudo-chaos for e = 2002.

For any non-zero λ , the first-return map to the strip Xe is a perturbed twist map on a lattice. The
twist condition is given by the theorem above, and the perturbation results from the cumulative effect
of a large number of linked strip maps. We distinguish two regimes. For a polygon class where the
twist κ(e) tends to zero, the low nonlinearity amplifies the effect of the perturbation. As a result, a
distinctive version of near-integrable Hamiltonian dynamics emerges on the lattice, featuring delicate
resonance-like structures, superimposed to low-amplitude fluctuations (figure 9).

By contrast, at parameters where the twist persists (e is a large square), the arabesques disappear,
and the featureless phase portrait suggests a form of ‘pseudo-chaotic’ dynamics. This type of dynam-
ics has been observed in piecewise affine maps on lattices [32].

6. DISCRETE TWIST MAPS AND INTERVAL-EXCHANGE TRANSFORMATIONS

We conclude our excursion into discrete rotational motions with a brief survey of a perturbed twist
map on a lattice, defined as

(27)
yt+1 ≡ yt + f (xt)(mod N)
xt+1 ≡ xt + yt+1 (mod N)

where N is a large fixed integer (the discretisation parameter) and f : Z→Z is an N-periodic function.
The phase space is a doubly-periodic lattice with N2 points.

To turn (27) into a discrete version of the standard mapping (3) one would choose, say, f (x) =
bNε sin(x/N)c, but this system is not amenable to a detailed analysis. A simpler choice for f was
considered in [50]:

(28) f (q) =

{
1 0 6 q < bN/2c
−1 otherwise.

This map is invertible, and hence all its orbits are periodic. It features a discrete version of dynamics
on a divided phase space, with a rudimentary form of island chains (figure 10).
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Figure 10: Orbits of the invertible mapping (27), for N = 256 and f given by (28).

Figure 11: An orbit of the local map (29) for the parameters α = 11, β = 3 and initial condition (200,0). The
orbit performs complex radial excursions.

We are interested in the motion in such resonant regions. After changing to local co-ordinates
centred at an elliptic fixed point, one finds that as N → ∞, the dynamics of an island is described by
the following lattice map of the plane [50, eq. (7)]:

(29) F : Z2→ Z2 yt+1 = yt − sign(xt)
xt+1 = xt +αyt+1 +β

0 6 β < α
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where α and β are integers determined by the rotation number of the island, and

sign(x) =

{
1 if x > 0
−1 if x < 0.

In spite of a simple appearance, the map (29) has a non-trivial dynamics which is not well-
understood (for a pseudo-hyperbolic variant of this model, see [32]).

It is not difficult to show that all orbits must intersect repeatedly the non-negative integer lattice
Z+, as illustrated in figure 11. Thus we define a Poincaré first-return map F of this domain. Letting
Z− be the set of negative integers, we find that F = F− ◦F+ is the composition of the first transit maps
F± from Z± to Z induced by F

F+ : Z+→ Z, F− : Z−→ Z.

(Strictly speaking, this statement holds only at sufficient distance from the origin.)
The following conjecture (see [50]) captures a salient feature of the map (29).

Conjecture 2. If α is not divisible by 4, then all orbits of F are periodic with period not exceeding
T = α/gcd(α,2β ). Moreover, for all sufficiently large initial conditions, the period is exactly T .

Figure 12: Left: Period T (x) of the orbit of the Poincaré recurrence map F of equation (32) through the point
x, for parameter values α = 23, β = 6. The period eventually attains the value α/gcd(α,2β ) = 23, according
to conjecture 2. Right: the smallest integer x0 = x0(β ) such that T (x0) = α , for α = 499 and 1 6 β < α/2.

Let us investigate the map F more closely. To find an expression for F± we solve (29) over each
domain where sign(x) is constant, and then match the solutions at the boundary line x = 0. We obtain

(30)
F+(x) = x+ τ+(x) x > 0
F−(x) = x+ τ−(x) x < 0
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Figure 13: The interval-exchange map F of equation (32), for parameters α = 11, β = 3.

where

τ+(x) = 2βu+(x)−αu+(x)2

u+(x) = bU+(x)+1c

U+(x) =
1

2α

(
2β −α +

√
(2β −α)2 +8αx

)
τ−(x) = 2βu−(x)+αu−(x)2

u−(x) = dU−(x)e

U−(x) =
1

2α

(
−(2β +α)+

√
(2β +α)2−8αx

)
.(31)

The functions τ± are singular, due to the presence of the floor and ceiling in u±. Each function has
an infinite sequence of singularities and is right-continuous at each singularity. The singularities have
the density of the squares.

The above expressions enable us to write the first-return map F to Z+ explicitly:

(32)
F(x) = F−(F+(x)) = x+ τ(x)
τ(x) = 2β (u+(x)+u−(y))+α(u2

−(y)−u2
+(x)) y = F+(x).

The map F is invertible, and locally it reduces to a translation, being a composition of two transla-
tions. Hence F is an interval-exchange transformation. The singularities of F determine the end-points
of the intervals being exchanged. and since there are infinitely many such singularities, we have an
interval-exchange transformation with infinitely many intervals (figure 13). For all odd values of the
parameter α , the interval-exchange dynamics causes all orbits of F to be be intertwined, i.e., there
are no bounding invariant sets. According to conjecture 2, the period T (x) of the orbits of F becomes
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eventually constant for large x. However, near the origin such a period shows a non-trivial depen-
dence on initial conditions as well as parameters (figure 12). In particular, the parameter dependence
features large fluctuations of arithmetical origin.
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