Rigidity of Frameworks

Bill Jackson
School of Mathematical Sciences
Queen Mary University of London
England

Goldsmiths’ Company Mathematics Course 2011,
July 17-22, 2011
A graph G is pair (V, E) where V and E are sets and the elements of E are unordered pairs of elements of V. We call the elements of V *vertices* and elements of E *edges.*
A graph G is pair (V, E) where V and E are sets and the elements of E are unordered pairs of elements of V. We call the elements of V vertices and elements of E edges.

A (2-dimensional) framework is pair (G, p) where G is a graph, and $p : V \rightarrow \mathbb{R}^2$. We think of the edges as ‘metal bars’ and each vertex as a ‘universal joint’ which allows the bars incident to it to rotate in any direction.
A graph G is pair (V, E) where V and E are sets and the elements of E are unordered pairs of elements of V. We call the elements of V vertices and elements of E edges.

A (2-dimensional) framework is pair (G, p) where G is a graph, and $p : V \rightarrow \mathbb{R}^2$. We think of the edges as ‘metal bars’ and each vertex as a ‘universal joint’ which allows the bars incident to it to rotate in any direction.

A framework (G, p) is generic if the vertices are at ‘generic points’ in the plane i.e. the coordinates of the points $p(v)$, $v \in V$, are algebraically independent over \mathbb{Q}. Intuitively this means that there are no ‘special relationships’ between the points e.g. no three points lie on a line.
Rigidity

The framework \((G, p)\) is **rigid** if every continuous motion of the vertices which preserves the lengths of the edges, must preserve the distances between ALL pairs of vertices.

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4
Consider a motion of a framework \((G, p)\). At time \(t = 0\), each vertex \(v\) will have a velocity \(q(v)\).
Consider a motion of a framework \((G, p)\). At time \(t = 0\), each vertex \(v\) will have a velocity \(q(v)\).

The constraint that the length of each edge is fixed implies that

\[
[p(u) - p(v)] \cdot [q(u) - q(v)] = 0
\]

for all \(uv \in E\).
Consider a motion of a framework \((G, p)\). At time \(t = 0\), each vertex \(v\) will have a velocity \(q(v)\).

The constraint that the length of each edge is fixed implies that

\[
[p(u) - p(v)] \cdot [q(u) - q(v)] = 0
\]

for all \(uv \in E\).

This gives us a system of \(|E|\) linear equations for the \(2|V|\) coordinates of the velocities. Any \(q : V \to \mathbb{R}^2\) which satisfies this system of equations is an **infinitesimal motion** of \((G, p)\).
Consider a motion of a framework \((G, p)\). At time \(t = 0\), each vertex \(v\) will have a velocity \(q(v)\).

The constraint that the length of each edge is fixed implies that

\[
[p(u) - p(v)] \cdot [q(u) - q(v)] = 0
\]

for all \(uv \in E\).

This gives us a system of \(|E|\) linear equations for the \(2|V|\) coordinates of the velocities. Any \(q : V \rightarrow \mathbb{R}^2\) which satisfies this system of equations is an \textit{infinitesimal motion} of \((G, p)\).

The \(|E| \times 2|V|\) matrix of coefficients of this system of equations is the \textit{rigidity matrix} \(R(G, p)\) for \((G, p)\).
Example

Bill Jackson Rigidity of Frameworks
$$\begin{pmatrix}
 p(v_1) - p(v_2) & p(v_2) - p(v_1) & 0 & 0 \\
 0 & p(v_2) - p(v_3) & p(v_3) - p(v_2) & 0 \\
 0 & 0 & p(v_3) - p(v_4) & p(v_4) - p(v_3) \\
 p(v_1) - p(v_4) & 0 & 0 & p(v_4) - p(v_1) \\
 0 & p(v_2) - p(v_4) & 0 & p(v_4) - p(v_2)
\end{pmatrix}$$
The null space $Z(G, p)$ of $R(G, p)$ is the set of all infinitesimal motions of (G, p).
A rank condition for rigidity

- The null space $Z(G, p)$ of $R(G, p)$ is the set of all infinitesimal motions of (G, p).

- We always have $\dim Z(G, p) \geq 3$ since every framework has three linearly independent infinitesimal motions (e.g. translations along the two axes and a rotation about the origin). Hence $\text{rank } R(G, p) \leq 2n - 3$ where $n = |V|$.
The null space $Z(G, p)$ of $R(G, p)$ is the set of all infinitesimal motions of (G, p).

We always have $\dim Z(G, p) \geq 3$ since every framework has three linearly independent infinitesimal motions (e.g. translations along the two axes and a rotation about the origin). Hence $\text{rank } R(G, p) \leq 2n - 3$ where $n = |V|$.

J.C. Maxwell observed in 1864 that (G, p) is rigid if $\text{rank } R(G, p) \leq 2n - 3$.
The null space $Z(G, p)$ of $R(G, p)$ is the set of all infinitesimal motions of (G, p). We always have $\dim Z(G, p) \geq 3$ since every framework has three linearly independent infinitesimal motions (e.g. translations along the two axes and a rotation about the origin). Hence $\text{rank } R(G, p) \leq 2n - 3$ where $n = |V|$. J.C. Maxwell observed in 1864 that (G, p) is rigid if $\text{rank } R(G, p) \leq 2n - 3$.

Asimow and Roth showed that this sufficient condition for rigidity is also necessary when (G, p) is generic.

Theorem (Asimow and Roth, 1979)

If (G, p) is generic, then (G, p) is rigid if and only if $\text{rank } R(G, p) = 2n - 3$.
A set of edges F in a framework (G, p) is \textit{independent} if the rows of $R(G, p)$ corresponding to F are linearly independent.
A set of edges F in a framework (G, p) is **independent** if the rows of $R(G, p)$ corresponding to F are linearly independent.

We can calculate rank $R(G, p)$ if we can determine when a given set of edges of G is independent.
Characterisation of generic rigidity

- A set of edges F in a framework (G, p) is **independent** if the rows of $R(G, p)$ corresponding to F are linearly independent.
- We can calculate $\text{rank } R(G, p)$ if we can determine when a given set of edges of G is independent.
- We know that $\text{rank } (G, p) \leq 2|V| - 3$. This implies that if F is independent then, for all $X \subseteq V$ with $|X| \geq 2$, the number of edges of F which join the vertices in X is at most $2|X| - 3$.

Bill Jackson
Rigidity of Frameworks
A set of edges F in a framework (G, p) is **independent** if the rows of $R(G, p)$ corresponding to F are linearly independent.

We can calculate rank $R(G, p)$ if we can determine when a given set of edges of G is independent.

We know that rank $(G, p) \leq 2|V| - 3$. This implies that if F is independent then, for all $X \subseteq V$ with $|X| \geq 2$, the number of edges of F which join the vertices in X is at most $2|X| - 3$.

G. Laman showed that this necessary condition for independence is also sufficient when (G, p) is generic.

Theorem (Laman 1970)

A set of edges F in a generic framework (G, p) is independent if and only if for all $X \subseteq V$, the number of edges of F which join the vertices in X is at most $2|X| - 3$.
Algorithm for constructing a maximum independent set of edges

Given a framework \((G, p)\) we can ‘greedily’ grow a largest independent set of edges \(F\) as follows.
Algorithm for constructing a maximum independent set of edges

Given a framework \((G, p)\) we can ‘greedily’ grow a largest independent set of edges \(F\) as follows.

- **INITIAL STEP** Choose an arbitrary edge and put it in \(F\).
Algorithm for constructing a maximum independent set of edges

Given a framework \((G, p)\) we can ‘greedily’ grow a largest independent set of edges \(F\) as follows.

- **INITIAL STEP** Choose an arbitrary edge and put it in \(F\).
- **RECURSIVE STEP** Choose an edge \(e\) which has not yet been considered and use Laman’s theorem to check whether \(F + e\) is independent:
 - If it is, put \(e\) in \(F\);
 - If it isn’t, delete \(e\) and move on to another edge.

Stop when all edges have been considered and output \(F\).
Algorithm for constructing a maximum independent set of edges

Given a framework \((G, p)\) we can ‘greedily’ grow a largest independent set of edges \(F\) as follows.

- **INITIAL STEP** Choose an arbitrary edge and put it in \(F\).
- **RECURSIVE STEP** Choose an edge \(e\) which has not yet been considered and use Laman’s theorem to check whether \(F + e\) is independent:
 - If it is, put \(e\) in \(F\);
 - If it isn’t, delete \(e\) and move on to another edge.

Stop when all edges have been considered and output \(F\).

NOTE. \((G, p)\) is rigid if and only if \(|F| = 2n - 3\).