Polytopes and moduli of matroids over rings

Alex Fink1 Luca Moci2

1Queen Mary University of London
2Paris VII

Perspectives in Lie Theory
16 February 2015
This talk is on joint work with Luca Moci, a second paper in preparation following up on arXiv:1209.6571.

- Matroids
- Matroids over rings, and a few applications
- The right choice of module invariants; how the axioms interrelate
- Polytopes
- The parameter space
- Coxeter generalizations?
A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\text{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that:

1. $\text{rk}(\emptyset) = 0$

2. $\text{rk}(A) \leq \text{rk}(A \cup \{b\}) \leq \text{rk}(A) + 1 \quad \forall A \not
\ni b$

3. $\text{rk}(A) + \text{rk}(A \cup \{b, c\}) \leq \text{rk}(A \cup \{b\}) + \text{rk}(A \cup \{c\}) \quad \forall A \not
\ni b, c$

Guiding example: realizable matroids

Let v_1, \ldots, v_n be vectors in a vector space V.

$$\text{rk}(A) := \dim \text{span}\{v_i : i \in A\}$$
A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\text{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that:

1. $\text{rk}(\emptyset) = 0$
2. $\text{rk}(A) \leq \text{rk}(A \cup \{b\}) \leq \text{rk}(A) + 1 \quad \forall A \not
\ni b$
3. $\text{rk}(A) + \text{rk}(A \cup \{b, c\}) \leq \text{rk}(A \cup \{b\}) + \text{rk}(A \cup \{c\}) \quad \forall A \not
\ni b, c$

A realizable matroid in full
Recast with \(\text{cork}(A) = r - \text{rk}(A) \).

Definition

A matroid \(M \) on the finite ground set \(E \) assigns to each subset \(A \subseteq E \) a corank \(\text{cork}(A) \in \mathbb{Z}_{\geq 0} \), such that:

1. \(\text{cork}(E) = 0 \)
2. \(\text{cork}(A) \geq \text{cork}(A \cup \{b\}) \geq \text{cork}(A) + 1 \quad \forall A \not\ni b \)
3. \(\text{cork}(A) + \text{cork}(A \cup \{b, c\}) \geq \text{cork}(A \cup \{b\}) + \text{cork}(A \cup \{c\}) \quad \forall A \not\ni b, c \)
Matroids over rings generalise matroids, as well as several variants which retain more data.

Valuated matroids come from configurations over a field with valuation, and remember valuations. [Dress-Wenzel]

Arithmetic matroids come from configurations over \(\mathbb{Z} \), and remember indices of sublattices. [D’Adderio-Moci]

(Compare matroids with coefficients [Dress].)
Let R be a commutative ring.

Let v_1, \ldots, v_n be a configuration of vectors in an R-module N. We would like a system of axioms for the quotients $N/\langle v_i : i \in A \rangle$.

Realizable example

<table>
<thead>
<tr>
<th>$v_1 = (-2, 1)$</th>
<th>$v_2 = (1, 1)$</th>
<th>$v_3 = (4, 2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>\emptyset</td>
<td>1</td>
</tr>
<tr>
<td>$M(A)$</td>
<td>\mathbb{Z}^2</td>
<td>\mathbb{Z}</td>
</tr>
</tbody>
</table>

| A | 3 | 13 |
| $M(A)$ | $\mathbb{Z} \oplus \mathbb{Z}/2$ | $\mathbb{Z}/8$ |

| A | 2 | 23 |
| $M(A)$ | $\mathbb{Z}/2$ | 1 |

| A | 12 | 123 |
| $M(A)$ | $\mathbb{Z}/3$ | |

Fink, Moci

Polytopes and moduli of matroids over rings 7 / 20
Let x_1, \ldots, x_n be a configuration of elements in an R-module N. We would like a system of axioms for the quotients $N/\langle x_i : i \in A \rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module $M(A)$ up to \cong, such that

for all $A \subseteq E$ and $b, c \notin A$, there are elements

$$x = x(b, c), \quad y = y(b, c) \in M(A)$$

with

$$M(A) = M(A), \quad M(A \cup \{b\}) \cong M(A)/\langle x \rangle,$$

$$M(A \cup \{c\}) \cong M(A)/\langle y \rangle, \quad M(A \cup \{b, c\}) \cong M(A)/\langle x, y \rangle.$$

Making different choices of x and y allows nonrealizability.
Let \(x_1, \ldots, x_n \) be a configuration of elements in an \(R \)-module \(N \). We would like a system of axioms for the quotients \(N/\langle x_i : i \in A \rangle \).

Main definition [F-Moci]

A matroid over \(R \) on the finite ground set \(E \) assigns to each subset \(A \subseteq E \) a f.g. \(R \) module \(M(A) \) up to \(\cong \), such that for all \(A \subseteq E \) and \(b, c \notin A \), there are elements

\[
x = x(b, c), \quad y = y(b, c) \in M(A)
\]

with

\[
M(A) = M(A), \quad M(A \cup \{b\}) \cong M(A)/\langle x \rangle, \\
M(A \cup \{c\}) \cong M(A)/\langle y \rangle, \quad M(A \cup \{b, c\}) \cong M(A)/\langle x, y \rangle.
\]

Making different choices of \(x \) and \(y \) allows nonrealizability.
Let x_1, \ldots, x_n be a configuration of elements in an R-module N. We would like a system of axioms for the quotients $N/\langle x_i : i \in A \rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module $M(A)$ up to \cong, such that for all $A \subseteq E$ and $b, c \not\in A$, there are elements

$$x = x(b, c), \quad y = y(b, c) \in M(A)$$

with

$$M(A) = M(A), \quad M(A \cup \{b\}) \cong M(A)/\langle x \rangle,$$

$$M(A \cup \{c\}) \cong M(A)/\langle y \rangle, \quad M(A \cup \{b, c\}) \cong M(A)/\langle x, y \rangle.$$

Making different choices of x and y allows nonrealizability.
Matroids are matroids over fields

Theorem 1 (F-Moci)

Matroids over a field k are equivalent to matroids*.

*if $M(E) = \emptyset$.

A f.g. k-module is determined by its dimension $\in \mathbb{Z}$.

If v_1, \ldots, v_n are vectors in k^r, the dimension of $k^r/\langle v_i : i \in N \rangle$ is $\text{cork}(A)$.

Example

$$
\begin{array}{cccccccccc}
A & 0 & 1 & 2 & 12 & 3 & 13 & 23 & 123 \\
M(A) & \mathbb{R}^2 & \mathbb{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} & 0 & 0 & 0
\end{array}
$$

Note: The definition of matroids over k is blind to which field k is. For realizability the choice matters.
Matroids are matroids over fields

Theorem 1 (F-Moci)

Matroids over a field k are equivalent to matroids *. *

if $M(E) = \emptyset$.

A f.g. k-module is determined by its dimension $\in \mathbb{Z}$.

If v_1, \ldots, v_n are vectors in k^r,
the dimension of $k^r/\langle v_i : i \in N \rangle$ is $\operatorname{cork}(A)$.

Example

<table>
<thead>
<tr>
<th>A</th>
<th>\emptyset</th>
<th>1</th>
<th>2</th>
<th>12</th>
<th>3</th>
<th>13</th>
<th>23</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(A)$</td>
<td>\mathbb{R}^2</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The definition of matroids over k is blind to which field k is.
For realizability the choice matters.
Subtorus arrangements

Let $\mathcal{H} = \{H_1, \ldots, H_n\}$ be codimension one tori in an r-dim’l torus T. [De Concini-Procesi]

The subtori $H_i = \{x : u_i(x) = 1\}$ are dual to characters $u_i \in \text{Char}(T) \cong \mathbb{Z}^r$.

Let M be the matroid over \mathbb{Z} represented by the u_i.

$$M(A) = \mathbb{Z}^k \oplus \text{(finite)} =: M(A)^{\text{free}} \oplus M(A)^{\text{torsion}}$$

Then

$$\text{rk}(M(A)^{\text{free}}) = \text{codim} \bigcap_{i \in A} H_i = \dim \text{span}\{u_i : i \in A\}$$

$$|M(A)^{\text{torsion}}| = \# \text{ components} \bigcap_{i \in A} H_i = [\mathbb{R}\{u_i\} \cap \text{Char}(T) : \mathbb{Z}\{u_i\}]$$

The arithmetic Tutte polynomial [D’Adderio-Moci] and Tutte quasipolynomial [Brändén-Moci] are invariants of M.
Let $\mathcal{H} = \{H_1, \ldots, H_n\}$ be codimension one tori in an r-dim’l torus T. [De Concini-Procesi]

The subtori $H_i = \{x : u_i(x) = 1\}$ are dual to characters $u_i \in \text{Char}(T) \cong \mathbb{Z}^r$.

Let M be the matroid over \mathbb{Z} represented by the u_i.

$$M(A) = \mathbb{Z}^k \oplus \text{(finite)} =: M(A)^{\text{free}} \oplus M(A)^{\text{torsion}}$$

Then

$$\text{rk}(M(A)^{\text{free}}) = \text{codim} \bigcap_{i \in A} H_i = \dim \text{span}\{u_i : i \in A\}$$

$$|M(A)^{\text{torsion}}| = \# \text{ components} \bigcap_{i \in A} H_i = [\mathbb{R}\{u_i\} \cap \text{Char}(T) : \mathbb{Z}\{u_i\}]$$

The arithmetic Tutte polynomial [D’Adderio-Moci] and Tutte quasipolynomial [Brändén-Moci] are invariants of M.

Tropical linear spaces

Let \((R, \text{val})\) be a valuation ring.

Given \(v_1, \ldots, v_n \in R^r\), let \(p_A = \det(v_a : a \in A)\).

The ideal of relations among the \(p_A\) is generated by Plücker relations

\[p_{A bc}p_{A de} - p_{A bd}p_{A ce} + p_{A be}p_{A cd} = 0. \]

A **valuated matroid** remembers the \(v_A = \text{val}(p_A)\), which satisfy

\[\min\{v_{A bc} + v_{A de}, v_{A bd} + v_{A ce}, v_{A be} + v_{A cd}\} \text{ appears twice.} \]

The Plücker relations cut out the Grassmannian.

The valuated Plücker relations define the **tropical Dressian**, whose points correspond to tropical linear spaces.

A matroid over \(R\) contains the data of a tropical linear space.

But what other data is in there?
Let \((R, \text{val})\) be a valuation ring.

Given \(v_1, \ldots, v_n \in R^r\), let \(p_A = \det(v_a : a \in A)\).

The ideal of relations among the \(p_A\) is generated by Plücker relations

\[p_{A_{bc}}p_{A_{de}} - p_{A_{bd}}p_{A_{ce}} + p_{A_{be}}p_{A_{cd}} = 0. \]

A valuated matroid remembers the \(v_A = \text{val}(p_A)\), which satisfy

\[\min\{v_{A_{bc}} + v_{A_{de}}, v_{A_{bd}} + v_{A_{ce}}, v_{A_{be}} + v_{A_{cd}}\} \] appears twice.

The Plücker relations cut out the Grassmannian.

The valuated Plücker relations define the tropical Dressian, whose points correspond to tropical linear spaces.

A matroid over \(R\) contains the data of a tropical linear space.

But what other data is in there?
Tropical linear spaces

Let \((R, \text{val})\) be a valuation ring.

Given \(v_1, \ldots, v_n \in R^r\), let \(p_A = \det(v_a : a \in A)\).

The ideal of relations among the \(p_A\) is generated by Plücker relations

\[p_{Abc}p_{Ade} - p_{Abd}p_{Ace} + p_{Abe}p_{Acd} = 0.\]

A **valuated matroid** remembers the \(v_A = \text{val}(p_A)\), which satisfy

\[\min\{v_{Abc} + v_{Ade}, v_{Abd} + v_{Ace}, v_{Abe} + v_{Acd}\} \text{ appears twice.}\]

The Plücker relations cut out the Grassmannian.

The valuated Plücker relations define the **tropical Dressian**, whose points correspond to tropical linear spaces.

A matroid over \(R\) contains the data of a tropical linear space.

But what other data is in there?
Assume \((R, \text{val})\) is a valuation ring.

Theorem

Any finitely presented \(R\)-module is the direct sum of copies of \(R\) and \(R/\text{val}^{-1}[a, \infty)\).

Let \(\text{length}(R) = \infty\) and \(\text{length}(R/\text{val}^{-1}[a, \infty)) = a\), and extend additively.

Proposition

For a f.p. \(R\)-module \(N\), define

\[t_i(N) := \min_{x_1, \ldots, x_i \in N} \text{length}(N/\langle x_1, \ldots, x_i \rangle). \]

Then the series \((t_i(N))_{i \geq 0}\) is a complete isomorphism invariant.
The length axiomatization

Theorem

Let \(t_i(A) \in \text{val}(R) \cup \{\infty\} \) for each \(A \subseteq E \) and \(i \geq 0 \). There exists a matroid \(M \) over \(R \) so that \(t_i(A) = t_i(M(A)) \iff \) for all \(A \subseteq E \) and \(b, c \in E \setminus A \) and \(i \geq 0 \),

\[(Ts)\] the sequence \((t_i(A))_{i \in \mathbb{N}} \) stabilises at zero;

\[(T0)\] \(t_i(A) - t_{i+1}(A) \geq t_{i+1}(A) - t_{i+2}(A) \);

\[(T1)\] \(t_i(A) - t_{i+1}(A) \geq t_i(AB) - t_{i+1}(AB) \geq t_{i+1}(A) - t_{i+2}(A) \);

\[(T2)\] \(t_{i+1}(A) - t_{i+1}(Ab) - t_{i+1}(Ac) + t_i(ABC) \geq \min\{t_i(AB) - t_{i+1}(AB), t_i(AC) - t_{i+1}(AC)\} \),

and equality is attained if the terms of the \(\min \) differ.

Conditions \((T0-2) \) imply the valued matroid axiom:

\[
\min\{t_i(ABC) + t_i(Ade), t_i(ABd) + t_i(Ace), t_i(Abe) + t_i(Acd)\}
\]

is attained twice. \(\text{ (D00)} \)
The length axiomatization

Theorem

Let \(t_i(A) \in \text{val}(R) \cup \{ \infty \} \) for each \(A \subset E \) and \(i \geq 0 \). There exists a matroid \(M \) over \(R \) so that \(t_i(A) = t_i(M(A)) \iff \) for all \(A \subset E \) and \(b, c \in E \setminus A \) and \(i \geq 0 \),

1. **(Ts)** the sequence \((t_i(A))_{i \in \mathbb{N}} \) stabilizes at zero;
2. **(T0)** \(t_i(A) - t_{i+1}(A) \geq t_{i+1}(A) - t_{i+2}(A) \);
3. **(T1)** \(t_i(A) - t_{i+1}(A) \geq t_i(A b) - t_{i+1}(A b) \geq t_{i+1}(A) - t_{i+2}(A) \);
4. **(T2)** \(t_{i+1}(A) - t_{i+1}(A b) - t_{i+1}(A c) + t_i(A b c) \geq \min\{t_i(A b) - t_{i+1}(A b), t_i(A c) - t_{i+1}(A c)\} \),

and equality is attained if the terms of the min differ.

Conditions (T0–2) imply the valuated matroid axiom:

\[
\min\{t_i(A b c) + t_i(A d e), t_i(A b d) + t_i(A c e), t_i(A b e) + t_i(A c d)\}
\]

is attained twice. (D00)
Generizing and zeroizing

Let \(x_1, \ldots, x_n \in N \) have matroid \(M \) over \(R \).

If we add \(x_0 = 0 \in N \) to the configuration, the new matroid \(M_0 \) has
\[
M_0(A_0) = M_0(A) = M(A).
\]

If instead we add a suitably generic \(x_* \in N \), the new matroid \(M_* \) has
\[
M_*(A) = M(A), \quad t_i(M_*(A_*)) = t_{i+1}(M(A)).
\]

By specializing \(k \) elements to zero and \(\ell \) to generic, \(0 \leq k, \ell \leq 2 \), condition (D00) becomes (D\(k\ell \)).

Fact

(T0) is (D22). (T1) is (D12) \(\land \) (D21). (T2) is (D11).

Almost-corollary

(D00), (D01), (D10), (Ts) are another choice of axioms.
Generizing and zeroizing

Let $x_1, \ldots, x_n \in N$ have matroid M over R.

If we add $x_0 = 0 \in N$ to the configuration, the new matroid M_0 has

$$M_0(A0) = M_0(A) = M(A).$$

If instead we add a suitably generic $x_* \in N$, the new matroid M_* has

$$M_*(A) = M(A), \quad t_i(M_*(A*)) = t_{i+1}(M(A)).$$

By specializing k elements to zero and ℓ to generic, $0 \leq k, \ell \leq 2$, condition (D00) becomes (D$k\ell$).

Fact

(T0) is (D22). (T1) is (D12) \land (D21). (T2) is (D11).

Almost-corollary

(D00), (D01), (D10), (Ts) are another choice of axioms.
The (basis) polytope of a usual matroid M is

$$\text{conv}\{e_A : |A| = r, \cork(A) = 0\}.$$

The polytope of a valuated matroid M is

$$\text{conv}\{(e_A, p_A) : |A| = r\} + \mathbb{R}_{\geq 0}(0, 1)$$

where conv discards points (v, ∞).

Theorem

P is a (valuated) matroid polytope if and only if

- each vertex (resp. its projection to \mathbb{R}^n) is a 0-1 vector; and
- each edge (resp. its projection) is in some direction $e_i - e_j$, with $i, j \in [n]$.

Fink, Moci
Let \((R, \text{val})\) be a valuation ring with \(\text{val}(R) \subseteq \mathbb{R}\). For \(M\) a matroid over \(R\), define the polytope

\[
P(M) := \text{conv}\{(e_A, i, t_i(M(A)))\} + \mathbb{R}_{\geq 0}(0, 0, 1).
\]

Theorem

\(P\) is the polytope of a matroid over \(R\) if and only if

- the projection of each vertex to \(\mathbb{R}^n \times \mathbb{R}\) is in \(\{0, 1\}^n \times \mathbb{N}\);
- the projection of each edge is in some direction \(e_i - e_j\), where \(i, j \in [n] \cup \{0, n + 1\}\), taking \(e_0 = 0\);
- \(P\) contains \([0, 1]^n \times [N, \infty) \times [0, \infty)\) for some \(N\).

If \(R\) has more primes, introduce more height coordinates.
Let \((R, \text{val})\) be a valuation ring with \(\text{val}(R) \subseteq \mathbb{R}\).

For \(M\) a matroid over \(R\), define the polytope

\[P(M) := \text{conv}\{(e_A, i, t_i(M(A))\} + \mathbb{R}_{\geq 0}(0, 0, 1). \]

Theorem

\(P\) is the polytope of a matroid over \(R\) if and only if

1. the projection of each vertex to \(\mathbb{R}^n \times \mathbb{R}\) is in \(\{0, 1\}^n \times \mathbb{N}\);
2. the projection of each edge is in some direction \(e_i - e_j\), where \(i, j \in [n] \cup \{0, n + 1\}\), taking \(e_0 = 0\);
3. \(P\) contains \([0, 1]^n \times [N, \infty) \times [0, \infty)\) for some \(N\).

If \(R\) has more primes, introduce more height coordinates.
Plücker incidence relations

\[
\min\{t_i(Abc) + t_i(Ad), t_i(Abd) + t_i(Ac), t_i(Acd) + t_i(Ab)\}
\]

is attained twice \hspace{1cm} (D10)

\[
\min\{t_i(Abc) + t_{i+1}(Ad), t_i(Abd) + t_{i+1}(Ac), t_i(Acd) + t_{i+1}(Ab)\}
\]

is attained twice \hspace{1cm} (D01)

are the tropicalizations of incidence relations between \(Gr(|A| + 1, n)\) and \(Gr(|A| + 2, n)\).

If \(L_i(k)\) is the tropical linear space with Plücker coordinates \(t_i(M(A))\) for \(A \in \binom{E}{k}\), then

\[
\begin{align*}
&\text{L}_0(0) \rightarrow \cdots \rightarrow \text{L}_0(k) \rightarrow \text{L}_0(k + 1) \rightarrow \cdots \rightarrow \text{L}_0(n) \\
&\text{L}_1(0) \rightarrow \cdots \rightarrow \text{L}_1(k) \rightarrow \text{L}_1(k + 1) \rightarrow \cdots \rightarrow \text{L}_1(n)
\end{align*}
\]
The parameter space

The **standard flag** of tropical linear spaces has all Plücker coordinates zero.

Theorem

Any diagram \((L)\) *of tropical linear spaces, in which all Plücker coordinates lie in* \(\text{val}(R)\) *and* \(L_i(\cdot)\) *is the standard flag for* \(i \gg 0\), *corresponds to a matroid over* \(R\).*

Not uniquely, since Plücker coordinates of \(L_i(k)\) are nonunique.
Fix a complete flag \mathcal{F} in \mathbb{C}^n and let $w = s_{i_1} \ldots s_{i_\ell}$ be a word in A_{n-1}.

The Bott-Samelson variety of w is

$$Z_w = \{(\mathcal{F}_0, \ldots, \mathcal{F}_s) \in \mathcal{F}\ell_n^{s+1} : \mathcal{F}_0 = \mathcal{F}, \mathcal{F}_k \text{ and } \mathcal{F}_{k+1} \text{ agree except in the } i_k\text{-dimensional space}\}.$$

Let Z_w^{trop} be its naive tropical analogue using Dressians.

Theorem

The parameter space of n-element matroids over R of global rank r is

$$\lim_{k \to 0} O_k$$

where O_k is a $r(n-r) + kn \text{ dim'}l$ orthant bundle over $Z_{w,c}^{\text{trop}}$, with w a longest Grassmannian word and c a certain Coxeter element.

Tropical Schubert calculus?
Fix a complete flag \mathcal{F} in \mathbb{C}^n and let $w = s_{i_1} \ldots s_{i_\ell}$ be a word in A_{n-1}. The **Bott-Samelson variety** of w is

$$Z_w = \{ (\mathcal{F}_0, \ldots, \mathcal{F}_s) \in \mathcal{F}_n^{s+1} : \mathcal{F}_0 = \mathcal{F}, \mathcal{F}_k \text{ and } \mathcal{F}_{k+1} \text{ agree except in the } i_k\text{-dimensional space} \}.$$

Let Z_{trop}^w be its naive tropical analogue using Dressians.

Theorem

The parameter space of n-element matroids over \mathbb{R} of global rank r is

$$\lim_{k \to 0} O_k$$

where O_k is a $r(n-r) + kn$ dim’l orthant bundle over $Z_{trop}^{wc_k}$, with w a longest Grassmannian word and c a certain Coxeter element.
Bott-Samelson varieties

Fix a complete flag \mathcal{F} in \mathbb{C}^n and let $w = s_{i_1} \ldots s_{i_\ell}$ be a word in A_{n-1}.

The Bott-Samelson variety of w is

$$Z_w = \{(\mathcal{F}_0, \ldots, \mathcal{F}_s) \in \mathcal{F}\ell_n^{s+1} : \mathcal{F}_0 = \mathcal{F},$$

$$\mathcal{F}_k \text{ and } \mathcal{F}_{k+1} \text{ agree except in the } i_k\text{-dimensional space}\}.$$

Let Z_w^{trop} be its naive tropical analogue using Dressians.

Theorem

The parameter space of n-element matroids over R of global rank r is

$$\lim_{k \geq 0} O_k$$

where O_k is a $r(n - r) + kn$ dim’l orthant bundle over Z_w^{trop}, with w a longest Grassmannian word and c a certain Coxeter element.

Tropical Schubert calculus?
Coxeter generalizations?

Bott-Samelson varieties exist in any Weyl type:

$$Z_w = \{(x, e_{i_1}(t_1)x, \ldots, e_{i_\ell}(t_\ell) \cdots e_{i_1}(t_1)x) \}\subseteq (G/B)^{\ell+1}$$

where the e_i are Chevalley generators.

Tropical Dressians should exist too.

Question Does this have anything to do with a valuation ring anymore?

As for $P(M)$, it has edges in directions of the A_{n+1} roots
(in which an A_1 orthogonal to the A_{n-1} has a special role.)

Question $A_{n-1} : A_{n+1} :: W : $ what?

Question Are these two connected?

Thank you!
Coxeter generalizations?

Bott-Samelson varieties exist in any Weyl type:

\[Z_w = \{(x, e_{i_1}(t_1)x, \ldots, e_{i_\ell}(t_\ell) \cdots e_{i_1}(t_1)x)\} \subseteq (G/B)^{\ell+1} \]

where the \(e_i \) are Chevalley generators.

Tropical Dressians should exist too.

Question Does this have anything to do with a valuation ring anymore?

As for \(P(M) \), it has edges in directions of the \(A_{n+1} \) roots
(in which an \(A_1 \) orthogonal to the \(A_{n-1} \) has a special role.)

Question \(A_{n-1} : A_{n+1} :: W : \) what?

Question Are these two connected?

Thank you!
Coxeter generalizations?

Bott-Samelson varieties exist in any Weyl type:

\[Z_w = \{(x, e_{i_1}(t_1)x, \ldots, e_{i_\ell}(t_\ell) \cdots e_{i_1}(t_1)x) \} \subseteq (G/B)^{\ell+1} \]

where the \(e_i \) are Chevalley generators.

Tropical Dressians should exist too.

Question Does this have anything to do with a valuation ring anymore?

As for \(P(M) \), it has edges in directions of the \(A_{n+1} \) roots (in which an \(A_1 \) orthogonal to the \(A_{n-1} \) has a special role.)

Question \(A_{n-1} : A_{n+1} :: W : \) what?

Question Are these two connected?

Thank you!
Coxeter generalizations?

Bott-Samelson varieties exist in any Weyl type:

\[Z_w = \left\{ \left(x, e_{i_1}(t_1)x, \ldots, e_{i_\ell}(t_\ell) \cdots e_{i_1}(t_1)x \right) \subseteq (G/B)^{\ell+1} \right\} \]

where the \(e_i \) are Chevalley generators.

Tropical Dressians should exist too.

Question Does this have anything to do with a valuation ring anymore?

As for \(P(M) \), it has edges in directions of the \(A_{n+1} \) roots (in which an \(A_1 \) orthogonal to the \(A_{n-1} \) has a special role.)

Question \(A_{n-1} : A_{n+1} :: W : \text{what?} \)

Question Are these two connected?

Thank you!
A bit more on DVRs

There is a bijection between finitely generated modules over a DVR & partitions allowing infinite parts.

Example

$N_\lambda = R \oplus R/m^3 \oplus R/m$

$\lambda = \begin{array}{|c|c|c|c|c|c|}
\hline
& & & & & \\
\hline
& & & & & \\
\hline
& & & & & \\
\hline
\end{array} \cdots$

Theorem (Hall, …)

The number of exact sequences

$$0 \to N_\lambda \to N_\nu \to N_\mu \to 0$$

up to \cong of sequences is the LR coeff $c_{\lambda\mu}^\nu$ (or its infinite-rows analog).

So, quotients by one element give the Pieri rule.

Lemma, en route to Theorem 3

M is a 1-element matroid over $R \iff M(\emptyset)$ has at most one box more in each column than $M(1)$.