BOIJ-S"ODERBERG EXPANSIONS OF MATROID STANLEY-REISNER RINGS

ALEX FINK

This note records a proof of Proposition 0.1 below, on a decomposition of matroid Stanley-Reisner rings into pure Boij-S"oderberg tables. We take the fundamental pure tables to be the vectors \(\pi_d \in \mathbb{Q}^Z \) indexed by sequences of positive integers \(d = (d_0, \ldots, d_c) \), such that the only nonzero components of \(\pi_d \) are
\[
(\pi_d)_{d_i} = \frac{(-1)^i}{\prod_{j \neq i} (d_j - d_i)}.
\]
We will always have \(d_0 = 0 \). We also write \(\{e_{ij}\} \) for the standard basis for the space \(\mathbb{Q}^Z \) of Betti tables.

Let \(S = k[x_1, \ldots, x_n] \). If \(\Delta \) is a simplicial complex on \([n] = \{1, \ldots, n\} \), then \(I_{\Delta} \subseteq S \) will denote its Stanley-Reisner ideal. Matroids on the ground set \([n] \) are interpreted as certain simplicial complexes on the vertices \([n] \), whose faces are the independent sets: thus the rank of \(M \) is its dimension plus one. We use matroidal notation for operations on these complexes: for instance we denote restriction of the complex \(\Delta \) to a set \(A \) by \(\Delta|_A \).

For concision, let \(C(M) \) be the set of maximal chains of flats of a matroid \(M \). If the ground set of \(M \) is \([n] \), this is the set of tuples \(F = (F_0, \ldots, F_{rk_M}) \) in which
\[
\emptyset = F_0 \subsetneq \cdots \subsetneq F_{rk_M} = [n]
\]
are all flats.

Proposition 0.1. If \(M \) is a matroid on \([n] \) of rank \(r \) with no coloops, then the Betti table of the Stanley-Reisner ring \(S/I_M \) is given by
\[
(0.1) \quad \beta(S/I_M) = \sum_{F \in C(M)} \left(\prod_{i=1}^{n-r} |F_i| - |F_{i-1}| \right) \cdot \pi_{n-|F_{n-r}|, \ldots, n-|F_0|}.
\]

Proof. We will use Hochster’s formula [1, Corollary 5.12], in the following form:
\[
\beta_{ij}(S/I_M) = \sum_{A \subseteq [n]} \dim \tilde{H}^{j-i-1}(M|A, k).
\]
These restrictions \(M|A \) of the matroid \(M \) are themselves matroids and are therefore Cohen-Macaulay, and so \(\dim \tilde{H}^{j-i-1}(M|A, k) \) is only nonzero if \(j - i - 1 \) is equal to the dimension of \(M|A \), i.e. if \(j - i = rk_M(A) \). The dimension of the top-dimensional homology of \(M|A \) is the Tutte evaluation \(T_{M|A}(0, 1) \). So the above sum may be recast
\[
\beta(S/I_M) = \sum_{A \subseteq [n]} T_{M|A}(0, 1) e_{|A|-rk_M(A), |A|}.
\]
Changing to the dual matroid, and writing \(F = [n] \setminus A \), this is

\[
0.2 \quad \beta(S/I_M) = \sum_{F \subseteq [n]} T_{M^*/F}(1, 0) e_{n-r-\text{rk}_{M^*}(F), n-|F|}.
\]

Let us now turn to the right side of (0.1). Expanding the definition of the \(\pi_d \), this is

\[
\sum_{F \text{ a flat}} e_{n-\text{rk}_{M^*}(F), n-|F|} \left(\sum_{G \in \mathcal{C}(M^*/F)} \prod_{j=1}^{\text{rk}_{M^*}/F} \frac{|G_j| - |G_{j-1}|}{|F| - |G_{j-1}|} \right) \left(\sum_{H \in \mathcal{C}(M^*/F)} \prod_{j=1}^{\text{rk}_{M^*}/F} \frac{|H_j| - |H_{j-1}|}{|H_j|} \right).
\]

We recast this as a sum over the various flats \(F := F_i \) of \(M^* \) that occur in the chains \(F \), breaking up the remaining summation into the subchain of \(F \) before the \(i \)th position and the subchain after. Note that \(i = \text{rk}_{M^*}(F) \). What results is

\[
\sum_{F \text{ a flat}} e_{n-\text{rk}_{M^*}(F), n-|F|} \left(\sum_{G \in \mathcal{C}(M^*/F)} \prod_{j=1}^{\text{rk}_{M^*}/F} \frac{|G_j| - |G_{j-1}|}{|F| - |G_{j-1}|} \right) \left(\sum_{H \in \mathcal{C}(M^*/F)} \prod_{j=1}^{\text{rk}_{M^*}/F} \frac{|H_j| - |H_{j-1}|}{|H_j|} \right).
\]

We now compare this sum to (0.2). First of all, the terms of (0.2) for which \(F \) is not a flat of \(M^* \) make no contribution, as then \(M^*/F \) contains a loop, making \(T_{M^*/F}(1, 0) \) equal to 0. We are thus done in view of the equations in Lemma 0.2 for the two parenthesized factors. \(M^*/F \) is loopfree because \(M^* \) is; \(M^*/F \) is because \(F \) is a flat.)

\[\square\]

Lemma 0.2. Let \(M \) be a matroid on ground set \([n]\) with no loops. Then

\[
(a) \quad \sum_{F \in \mathcal{C}(M)} \prod_{j=1}^{\text{rk}_{M}} \frac{|F_j| - |F_{j-1}|}{n - |F_{j-1}|} = 1.
\]

\[
(b) \quad \sum_{F \in \mathcal{C}(M)} \prod_{j=1}^{\text{rk}_{M}} \frac{|F_j| - |F_{j-1}|}{|F_j|} = T_M(1, 0).
\]

Proof. In both cases the proof will be inductive on the rank of \(M \), by taking subchains of length one less and passing to an appropriate minor of \(M \). The rank 0 base cases are trivial.

For (a), we extract the \(j = 1 \) term of the product, giving

\[
\sum_{F \text{ a rank 1 flat}} \left(\frac{|F|}{n} \sum_{G \in \mathcal{C}(M/F)} \prod_{i=1}^{\text{rk}_{M}/F} \frac{|G_i| - |G_{i-1}|}{n - |F_i| - |G_{i-1}|} \right)
\]

by induction. Since the rank 1 flats partition \([n]\), the sum above equals 1 as desired.

For (b), we begin by noting that \(T_M(1, 0) \) is the Möbius function evaluation \((-1)^{\text{rk}_{M}}\mu(\emptyset, [n])\) in the lattice of flats of \(M \). (This follows from the Crosscut Theorem [2, Corollary 3.9.4], since by the corank-nullity expansion of Tutte, \(T_M(1, 0) \) counts spanning sets of \(M \) with alternating sign.)
Using the induction, we extract the $j = \text{rk} M$ term of the product and have

$$\sum_{F \text{ a hyperplane}} \left(\frac{n - |F|}{n} \sum_{G \in \mathcal{C}(M|F)} \left(\prod_{j=1}^{\text{rk} M - 1} \frac{|G_j| - |G_{j-1}|}{|G_j|} \right) \right)$$

$$= \sum_{F \text{ a hyperplane}} \frac{n - |F|}{n} \cdot (-1)^{\text{rk} M - 1} \mu(\emptyset, F)$$

$$= \frac{1}{n} \sum_{a \in [n]} \sum_{F \not\ni a \text{ a hyperplane}} (-1)^{\text{rk} M - 1} \mu(\emptyset, F)$$

$$= \frac{1}{n} \sum_{a \in [n]} (-1)^{\text{rk} M} \mu(\emptyset, [n])$$

$$= (-1)^{\text{rk} M} \mu(\emptyset, [n]),$$

where the second-last equality is Weisner's theorem [2, Corollary 3.9.3].

[[Eliminate the no-coloops restriction. Is this better framed in terms of the cover ideal, and does it then go through for non-matroids? Are there connections between the product on Boij-Söderberg tables and my Hopf structures with Derksen?]]

References
