
9 Non-Cooperative Games

The theory of non-cooperative games studies situations in which multiple self-interested

entities, or players, simultaneously and independently optimize different objectives and

outcomes must therefore be self-enforcing.

9.1 Games and Solutions

The central object of study in non-cooperative game theory are normal-form games.

We restrict our attention to two-player games, but note that most concepts extend in a

straightforward way to games with more than two players. A two-player game with m

actions for player 1 and n actions for player 2 can be represented by a pair of matrices

P,Q ∈ R
m×n, where pij and qij are the payoffs of players 1 and 2 when player 1 plays

action i and player 2 plays action j. Two-player games are therefore sometimes referred

to as bimatrix games, and players 1 and 2 as the row and column player, respectively.

We will assume that players can choose their actions randomly and denote the set

of possible strategies of the two players by X and Y, respectively, i.e., X = {x ∈ R
m
>0 :∑m

i=1 xi = 1} and Y = {y ∈ R
n
>0 :

∑n
i=1 yi = 1}. A pure strategy is a strategy that

chooses some action with probability one, and we make no distinction between pure

strategies and the corresponding actions. A profile (x, y) ∈ X× Y of strategies induces

a lottery over outcomes, and we write p(x, y) = xTPy for the expected payoff of the

row player in this lottery.

Consider for example the well-known prisoner’s dilemma, involving two suspects

accused of a crime who are being interrogated separately. If both remain silent, they

walk free after spending a few weeks in pretrial detention. If one of them testifies against

the other and the other remains silent, the former is released immediately while the

latter is sentenced to ten years in jail. If both suspects testify, each of them receives a

five-year sentence. A representation of this situation as a two-player normal-form game

is shown in Figure 9.1.

It is easy to see what the players in this game should do, because action T yields a

strictly larger payoff than action S for every action of the respective other player. More

generally, for two strategies x, x ′
∈ X of the row player, x is said to (strictly) dominate

x ′ if for every strategy y ∈ Y of the column player, p(x, y) > p(x ′, y). Dominance

for the column player is defined analogously. Strategy profile (T, T) in the prisoner’s

dilemma is what is called a dominant strategy equilibrium, a profile of strategies that

dominate every other strategy of the respective player. The source of the dilemma is

that outcome resulting from (T, T) is strictly worse for both players than the outcome

resulting from (S, S). More generally, an outcome that is weakly preferred to another

outcome by all players, and strictly preferred by at least one player is said to Pareto
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S T

S (2, 2) (0, 3)

T (3, 0) (1, 1)

Figure 9.1: Representation of the prisoner’s dilemma as a normal-form game. The

matrices P and Q are displayed as a single matrix with entries (pij, qij), and players 1

and 2 respectively choose a row and a column of this matrix. Action S corresponds to

remaining silent, action T to testifying.

C D

C (2, 2) (1, 3)

D (3, 1) (0, 0)

Figure 9.2: The game of chicken, where players can chicken out or dare

dominate that outcome. An outcome that is Pareto dominated is clearly undesirable.

In the absence of dominant strategies, it is less obvious how players should proceed.

Consider for example the game of chicken illustrated in Figure 9.2. This game has its

origins in a situation where two cars drive towards each other on a collision course.

Unless one of the drivers yields, both may die in a crash. If one of them yields while

the other goes straight, however, the former will be called a “chicken,” or coward. It is

easily verified that this game does not have any dominant strategies.

The most cautious choice in a situation like this would be to ignore that the other

player is self-interested and choose a strategy that maximizes the payoff in the worst

case, taken over all of the other player’s strategies. A strategy of this type is known

as a maximin strategy, and the payoff thus obtained as the player’s security level. It

is easy to see that it suffices to maximize the minimum payoff over all pure strategies

of the other player, i.e., to choose x such that minj∈{1,...,n}

∑m
i=1 xipij is as large as

possible. Maximization of this minimum can be achieved by maximizing a lower bound

that holds for all j = 1, . . . , n, so a maximin strategy and the security level for the row

player can be found as a solution of the following linear program with variables v ∈ R

and x ∈ R
m:

maximize v

subject to

m∑

i=1

xipij > v for j = 1, . . . , n

m∑

i=1

xi = 1

x > 0.

(9.1)

The unique maximin strategy in the game of chicken is to yield, for a security level
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of 1. This also illustrates that a maximin strategy need not be optimal: assuming that

the row player yields, the optimal action for the column player is in fact to go straight.

Formally, strategy x ∈ X of the row player is a best response to strategy y ∈ Y of the

column player if for all x ′
∈ X, p(x, y) > p(x ′, y). The concept of a best response for

the column player is defined analogously. A pair of strategies (x, y) ∈ X×Y such that x

is a best response to y and y is a best response to x is called an equilibrium. Equilibria

are also known as Nash equilibria, because their universal existence was shown by John

Nash.

Theorem 9.1 (Nash, 1951). Every bimatrix game has an equilibrium.

It is easily verified that both (C,D) and (D,C) are equilibria of the game of chicken,

and there is one more equilibrium, in which both players randomize uniformly between

their two actions. The proof of Theorem 9.1 is beyond the scope of this course, but

we show the result for the special case when the players have diametrically opposed

interests.

9.2 The Minimax Theorem

A two-player game is called zero-sum game if qij = −pij for all i = 1, . . . ,m and

j = 1, . . . , n. A game of this type is sometimes called a matrix game, because it can be

represented just by the matrix P containing the payoffs of the row player. Assuming

invariance of utilities under positive affine transformations, results for zero-sum games

in fact apply to the larger class of constant-sum games, in which the payoffs of the two

players always sum up to the same constant. For games with more than two players,

these properties are far less interesting, as one can always add an extra player who

“absorbs” the payoffs of the others.

It turns out that in zero-sum games, maximin strategies are optimal.

Theorem 9.2 (von Neumann, 1928). Let P ∈ R
m×n, X = {x ∈ R

m
>0 :

∑m
i=1 xi = 1},

Y = {y ∈ R
n
>0 :

∑n
i=1 yi = 1}. Then,

max
x∈X

min
y∈Y

p(x, y) = min
y∈Y

max
x∈X

p(x, y).

Proof. Again consider the linear program (9.1), and recall that the optimum value

of this linear program is equal to maxx∈X miny∈Y p(x, y). By adding a slack variable

z ∈ R
n with z > 0 we obtain the Lagrangian

L(v, x, z,w, y) = v+

n∑

j=1

yj

(

m∑

i=1

xipij − zj − v
)

−w
(

m∑

i=1

xi − 1
)

=
(

1−

n∑

j=1

yj

)

v+

m∑

i=1

(

n∑

j=1

pijyj −w
)

xi −

n∑

j=1

yjzj +w,



36 9 · Non-Cooperative Games

where w ∈ R and y ∈ R
n. The Lagrangian has a finite maximum for v ∈ R and x ∈ R

m

with x > 0 if and only if
∑n

j=1 yj = 1,
∑n

j=1 pijyj 6 w for i = 1, . . . ,m, and y > 0. In

the dual of (9.1) we therefore want to

minimize w

subject to

n∑

j=1

pijyj 6 w for i = 1, . . . ,m

n∑

j=1

yj = 1

y > 0.

It is easy to see that the optimum value of the dual is miny∈Y maxx∈X p(x, y), and the

theorem follows from strong duality.

The number maxx∈X miny∈Y p(x, y) = miny∈Y maxx∈X p(x, y) is also called the

value of the matrix game with payoff matrix P.

It is now easy to show that every matrix game has an equilibrium, and that the

above result in fact characterizes the set of equilibria of such games.

Theorem 9.3. A pair of strategies (x, y) ∈ X × Y is an equilibrium of the matrix

game with payoff matrix P if and only if

min
y ′∈Y

p(x, y ′) = max
x ′∈X

min
y ′∈Y

p(x ′, y ′) and

max
x ′∈X

p(x ′, y) = min
y ′∈Y

max
x ′∈X

p(x ′, y ′).


