9 Non-Cooperative Games

The theory of non-cooperative games studies situations in which multiple self-interested entities, or players, simultaneously and independently optimize different objectives and outcomes must therefore be self-enforcing.

9.1 Games and Solutions

The central object of study in non-cooperative game theory are normal-form games. We restrict our attention to two-player games, but note that most concepts extend in a straightforward way to games with more than two players. A two-player game with m actions for player 1 and n actions for player 2 can be represented by a pair of matrices $P, Q \in \mathbb{R}^{m \times n}$, where $p_{i j}$ and $q_{i j}$ are the payoffs of players 1 and 2 when player 1 plays action \mathfrak{i} and player 2 plays action \mathfrak{j}. Two-player games are therefore sometimes referred to as bimatrix games, and players 1 and 2 as the row and column player, respectively.

We will assume that players can choose their actions randomly and denote the set of possible strategies of the two players by X and Y, respectively, i.e., $X=\left\{x \in \mathbb{R}_{\geqslant 0}^{m}\right.$: $\left.\sum_{i=1}^{m} x_{i}=1\right\}$ and $Y=\left\{y \in \mathbb{R}_{\geqslant 0}^{n}: \sum_{i=1}^{n} y_{i}=1\right\}$. A pure strategy is a strategy that chooses some action with probability one, and we make no distinction between pure strategies and the corresponding actions. A profile $(x, y) \in X \times Y$ of strategies induces a lottery over outcomes, and we write $p(x, y)=x^{\top} P y$ for the expected payoff of the row player in this lottery.

Consider for example the well-known prisoner's dilemma, involving two suspects accused of a crime who are being interrogated separately. If both remain silent, they walk free after spending a few weeks in pretrial detention. If one of them testifies against the other and the other remains silent, the former is released immediately while the latter is sentenced to ten years in jail. If both suspects testify, each of them receives a five-year sentence. A representation of this situation as a two-player normal-form game is shown in Figure 9.1.

It is easy to see what the players in this game should do, because action T yields a strictly larger payoff than action S for every action of the respective other player. More generally, for two strategies $x, x^{\prime} \in X$ of the row player, x is said to (strictly) dominate x^{\prime} if for every strategy $y \in Y$ of the column player, $p(x, y)>p\left(x^{\prime}, y\right)$. Dominance for the column player is defined analogously. Strategy profile (T, T) in the prisoner's dilemma is what is called a dominant strategy equilibrium, a profile of strategies that dominate every other strategy of the respective player. The source of the dilemma is that outcome resulting from (T, T) is strictly worse for both players than the outcome resulting from (S, S). More generally, an outcome that is weakly preferred to another outcome by all players, and strictly preferred by at least one player is said to Pareto

	S
T	
	$(2,2)$
	$(0,3)$
T	$(3,0)$
	$(1,1)$

Figure 9.1: Representation of the prisoner's dilemma as a normal-form game. The matrices P and Q are displayed as a single matrix with entries ($p_{i j}, q_{i j}$), and players 1 and 2 respectively choose a row and a column of this matrix. Action S corresponds to remaining silent, action T to testifying.

Figure 9.2: The game of chicken, where players can chicken out or dare
dominate that outcome. An outcome that is Pareto dominated is clearly undesirable.
In the absence of dominant strategies, it is less obvious how players should proceed. Consider for example the game of chicken illustrated in Figure 9.2. This game has its origins in a situation where two cars drive towards each other on a collision course. Unless one of the drivers yields, both may die in a crash. If one of them yields while the other goes straight, however, the former will be called a "chicken," or coward. It is easily verified that this game does not have any dominant strategies.

The most cautious choice in a situation like this would be to ignore that the other player is self-interested and choose a strategy that maximizes the payoff in the worst case, taken over all of the other player's strategies. A strategy of this type is known as a maximin strategy, and the payoff thus obtained as the player's security level. It is easy to see that it suffices to maximize the minimum payoff over all pure strategies of the other player, i.e., to choose x such that $\min _{j \in\{1, \ldots, n\}} \sum_{i=1}^{m} x_{i} p_{i j}$ is as large as possible. Maximization of this minimum can be achieved by maximizing a lower bound that holds for all $j=1, \ldots, n$, so a maximin strategy and the security level for the row player can be found as a solution of the following linear program with variables $v \in \mathbb{R}$ and $x \in \mathbb{R}^{m}$:

$$
\begin{array}{ll}
\operatorname{maximize} & v \\
\text { subject to } & \sum_{i=1}^{m} x_{i} p_{i j} \geqslant v \text { for } j=1, \ldots, n \tag{9.1}\\
& \sum_{i=1}^{m} x_{i}=1 \\
& x \geqslant 0 .
\end{array}
$$

The unique maximin strategy in the game of chicken is to yield, for a security level
of 1 . This also illustrates that a maximin strategy need not be optimal: assuming that the row player yields, the optimal action for the column player is in fact to go straight. Formally, strategy $x \in X$ of the row player is a best response to strategy $y \in Y$ of the column player if for all $x^{\prime} \in X, p(x, y) \geqslant p\left(x^{\prime}, y\right)$. The concept of a best response for the column player is defined analogously. A pair of strategies $(x, y) \in X \times Y$ such that x is a best response to y and y is a best response to x is called an equilibrium. Equilibria are also known as Nash equilibria, because their universal existence was shown by John Nash.

Theorem 9.1 (Nash, 1951). Every bimatrix game has an equilibrium.
It is easily verified that both (C, D) and (D, C) are equilibria of the game of chicken, and there is one more equilibrium, in which both players randomize uniformly between their two actions. The proof of Theorem 9.1 is beyond the scope of this course, but we show the result for the special case when the players have diametrically opposed interests.

9.2 The Minimax Theorem

A two-player game is called zero-sum game if $q_{i j}=-p_{i j}$ for all $i=1, \ldots, m$ and $\mathfrak{j}=1, \ldots, n$. A game of this type is sometimes called a matrix game, because it can be represented just by the matrix P containing the payoffs of the row player. Assuming invariance of utilities under positive affine transformations, results for zero-sum games in fact apply to the larger class of constant-sum games, in which the payoffs of the two players always sum up to the same constant. For games with more than two players, these properties are far less interesting, as one can always add an extra player who "absorbs" the payoffs of the others.

It turns out that in zero-sum games, maximin strategies are optimal.
Theorem 9.2 (von Neumann, 1928). Let $P \in \mathbb{R}^{m \times n}, X=\left\{x \in \mathbb{R}_{\geqslant 0}^{m}: \sum_{i=1}^{m} x_{i}=1\right\}$, $Y=\left\{y \in \mathbb{R}_{\geqslant 0}^{n}: \sum_{i=1}^{n} y_{i}=1\right\}$. Then,

$$
\max _{x \in X} \min _{y \in Y} p(x, y)=\min _{y \in Y} \max _{x \in X} p(x, y) .
$$

Proof. Again consider the linear program (9.1), and recall that the optimum value of this linear program is equal to $\max _{x \in X} \min _{y \in Y} p(x, y)$. By adding a slack variable $z \in \mathbb{R}^{n}$ with $z \geqslant 0$ we obtain the Lagrangian

$$
\begin{aligned}
L(v, x, z, w, y) & =v+\sum_{j=1}^{n} y_{j}\left(\sum_{i=1}^{m} x_{i} p_{i j}-z_{j}-v\right)-w\left(\sum_{i=1}^{m} x_{i}-1\right) \\
& =\left(1-\sum_{j=1}^{n} y_{j}\right) v+\sum_{i=1}^{m}\left(\sum_{j=1}^{n} p_{i j} y_{j}-w\right) x_{i}-\sum_{j=1}^{n} y_{j} z_{j}+w,
\end{aligned}
$$

where $w \in \mathbb{R}$ and $y \in \mathbb{R}^{n}$. The Lagrangian has a finite maximum for $v \in \mathbb{R}$ and $x \in \mathbb{R}^{m}$ with $x \geqslant 0$ if and only if $\sum_{j=1}^{n} y_{j}=1, \sum_{j=1}^{n} p_{i j} y_{j} \leqslant w$ for $i=1, \ldots, m$, and $y \geqslant 0$. In the dual of (9.1) we therefore want to

$$
\begin{array}{ll}
\operatorname{minimize} & w \\
\text { subject to } & \sum_{\mathfrak{j}=1}^{n} p_{i j} y_{j} \leqslant w \quad \text { for } \mathfrak{i}=1, \ldots, m \\
& \sum_{j=1}^{n} y_{j}=1 \\
& y \geqslant 0 .
\end{array}
$$

It is easy to see that the optimum value of the dual is $\min _{y \in Y} \max _{x \in X} \mathfrak{p}(x, y)$, and the theorem follows from strong duality.

The number $\max _{x \in X} \min _{y \in Y} p(x, y)=\min _{y \in Y} \max _{x \in X} p(x, y)$ is also called the value of the matrix game with payoff matrix P.

It is now easy to show that every matrix game has an equilibrium, and that the above result in fact characterizes the set of equilibria of such games.

Theorem 9.3. A pair of strategies $(x, y) \in X \times Y$ is an equilibrium of the matrix game with payoff matrix P if and only if

$$
\begin{aligned}
& \min _{y^{\prime} \in Y} p\left(x, y^{\prime}\right)=\max _{x^{\prime} \in X} \min _{y^{\prime} \in Y} p\left(x^{\prime}, y^{\prime}\right) \quad \text { and } \\
& \max _{x^{\prime} \in X} p\left(x^{\prime}, y\right)=\min _{y^{\prime} \in Y} \max _{x^{\prime} \in X} p\left(x^{\prime}, y^{\prime}\right) .
\end{aligned}
$$

