
6 Linear Programming Duality

Consider the linear program (1.2) and introduce slack variables z to turn it into

min { cTx : Ax− z = b, x, z > 0 }.

We have X = {(x, z) : x > 0, z > 0} ⊆ R
m+n. The Lagrangian is given by

L((x, z), λ) = cTx− λT (Ax− z− b) = (cT − λTA)x+ λTz+ λTb

and has a finite minimum over X if and only if

λ ∈ Y = {µ : cT − µTA > 0, µ > 0 }.

For λ ∈ Y, the minimum of L((x, z), λ) is attained when both (cT − λTA)x = 0 and

λTz = 0, and thus

g(λ) = inf
(x,z)∈X

L((x, z), λ) = λTb.

We obtain the dual

max {bTλ : ATλ 6 c, λ > 0 }. (6.1)

The dual of (1.3) can be determined analogously as

max {bTλ : ATλ 6 c }.

The dual is itself a linear program, and its dual is in fact equivalent to the primal.

Theorem 6.1. In the case of linear programming, the dual of the dual is the primal.

Proof. The dual can be written equivalently as

min {−bTλ : −ATλ > −c, λ > 0 }.

This problem has the same form as the primal (1.2), with −b taking the role of c, −c

taking the role of b, and −AT the role of A. Taking the dual again we thus return to

the original problem.

6.1 The Relationship between Primal and Dual

Example 6.2. Consider the following pair of a primal and dual LP, with slack variables

z1 and z2 for the primal and µ1 and µ2 for the dual.

maximize 3x1 + 2x2

subject to 2x1 + x2 + z1 = 4

2x1 + 3x2 + z2 = 6

x1, x2, z1, z2 > 0

minimize 4λ1 + 6λ2

subject to 2λ1 + 2λ2 − µ1 = 3

λ1 + 3λ2 − µ2 = 2

λ1, λ2, µ1, µ2 > 0
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Figure 6.1: Geometric interpretation of primal and dual linear programs in Example 6.2

To see that these LPs are indeed dual to each other, observe that the primal has the

form (1.2), and the dual the form (6.1), with

c = −

(

3

2

)

, A = −

(

2 1

2 3

)

, b = −

(

4

6

)

.

As before, we can compute all basic solutions of the primal by setting any set of

n−m = 2 variables to zero in turn, and solving for the values of the remaining m = 2

variables. Given a particular basic solution of the primal, the corresponding dual

solution can be found using the complementary slackness conditions λ1z1 = 0 = λ2z2

and µ1x1 = 0 = µ2x2. These conditions identify, for each non-zero variable of the

primal, a dual variable whose value has to be equal to zero. By solving for the remaining

variables, we obtain a solution for the dual, which is in fact a basic solution. Repeating

this procedure for every basic solution of the primal, we obtain the following pairs of

basic solutions of the primal and dual:

x1 x2 z1 z2 f(x) λ1 λ2 µ1 µ2 g(λ)

A 0 0 4 6 0 0 0 −3 −2 0

B 2 0 0 2 6 3
2

0 0 −1
2

6

C 3 0 −2 0 9 0 3
2

0 5
2

9

D 3
2

1 0 0 13
2

5
4

1
4

0 0 13
2

E 0 2 2 0 4 0 2
3

−5
3

0 4

F 0 4 0 −6 8 2 0 1 0 8

Labels A through F refer to Figure 6.2, which illustrates the feasible regions of the

primal and the dual. Observe that there is only one pair such that both the primal and

the dual solution are feasible, the one labeled D, and that these solutions are optimal.
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6.2 Necessary and Sufficient Conditions for Optimality

In the above example, primal feasibility, dual feasibility, and complementary slackness

together imply optimality. It turns out that this is true in general, and the condition

is in fact both necessary and sufficient for optimality.

Theorem 6.3. Let x and λ be feasible solutions for the primal (1.2) and the

dual (6.1), respectively. Then x and λ are optimal if and only if they satisfy

complementary slackness, i.e., if

(cT − λTA)x = 0 and λT (Ax− b) = 0.

Proof. If x and λ are optimal, then

cTx = λTb

= inf
x ′∈X

(

cTx ′ − λT (Ax ′ − b)
)

6 cTx− λT (Ax− b)

6 cTx.

Since the first and last term are the same, the two inequalities must hold with equality.

Therefore, λTb = cTx − λT (Ax − b) = (cT − λTA)x + λTb, and thus (cT − λTA)x = 0.

Furthermore, cTx− λT (Ax− b) = cTx, and thus λT (Ax− b) = 0.

If on the other hand (cT − λTA)x = 0 and λT (Ax− b) = 0, then

cTx = cTx− λT (Ax− b) = (cT − λTA)x+ λTb = λTb,

and by weak duality x and λ must be optimal.

While the result has been formulated here for the primal LP in general form and

the corresponding dual, it is true, with the appropriate complementary slackness con-

ditions, for any pair of a primal and dual LP.


