
5 Solutions of Linear Programs

In the remaining lectures, we will concentrate on linear programs. We begin by studying

the special structure of the feasible set and the objective function in this case, and how

it affects the set of optimal solutions.

5.1 Basic Solutions

In the LP of Example 1.1, the optimal solution happened to lie at an extreme point of

the feasible set. This was not a coincidence. Consider an LP in general form,

maximize cTx subject to Ax 6 b, x > 0. (5.1)

The feasible set of this LP is a convex polytope in R
n, i.e., an intersection of half-spaces.

Each level set of the objective function cTx, i.e., each set Lα = {x ∈ R
n : cTx = α} of

points for which the value of the objective function is equal to some constant α ∈ R, is

a k-dimensional flat for some k 6 n. The goal is to find the largest value of α for which

Lα(f) intersects with the feasible set. If such a value exists, the intersection contains

either a single point or an infinite number of points, and it is guaranteed to contain an

extreme point of the feasible set. This fact is illustrated in Figure 5.1, and we will give

a proof momentarily.

Formally, x ∈ S is an extreme point of a convex set S if it cannot be written as a

convex combination of two distinct points in S, i.e., if for all y, z ∈ S and δ ∈ (0, 1),

x = δy+(1−δ)z implies that x = y = z. Since this geometric characterization of extreme

points is hard to work with, we consider an alternative, algebraic characterization. To

this end, consider the following LP in standard form, which can be obtained from (5.1)

by introducing slack variables:

maximize cTx subject to Ax = b, x > 0, (5.2)

where A ∈ R
m×n and b ∈ R

m. Call a solution x ∈ R
n of the equation Ax = b basic

if at most m of its entries are non-zero, i.e., if there exists a set B ⊆ {1, . . . , n} with

|B| = m such that xi = 0 if i /∈ B. The set B is then called basis, and variable xi is

called basic if i ∈ B and non-basic if i /∈ B. A basic solution x that also satisfies x > 0

is a basic feasible solution (BFS) of (5.2).

We will henceforth make the following assumptions:

(i) the rows of A are linearly independent,

(ii) every set of m columns of A are linearly independent, and

(iii) every basic solution is non-degenerate, i.e., has exactly m non-zero variables.
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f(x) = α∗

f(x) = α

f(x) = α∗

f(x) = α

Figure 5.1: Illustration of linear programs with one optimal solution (left) and an

infinite number of optimal solutions (right)

Assumptions (i) and (ii) are without loss of generality: if a set of rows are linearly

dependent, one of the corresponding constraints can be removed without changing the

feasible set; similarly, if a set of columns are linearly dependent, one of the correspond-

ing variables can be removed. Extra care needs to be taken to handle degeneracies, but

this is beyond the scope of this course.

If the above assumptions are satisfied, setting any subset of n−m variables to zero

uniquely determines the value of the remaining, basic variables. Computing the set of

basic feasible solutions is thus straightforward.

Example 5.1. Again consider the LP of Example 1.1. By adding slack variables x3 > 0

and x4 > 0, the functional constraint can be written as
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The problem has the following six basic solutions corresponding to the
(

4

2

)

possible

ways to choose a basis, which are labeled A through F in Figure 1.1:

x1 x2 x3 x4 f(x)

A 0 0 6 3 0

B 0 3 0 6 3

C 4 1 0 0 5

D 3 0 3 0 3

E 6 0 0 −3 6

F 0 −3 12 0 −3
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5.2 Extreme Points and Optimal Solutions

It turns out that the basic feasible solutions are precisely the extreme points of the

feasible set.

Theorem 5.2. A vector is a basic feasible solution of Ax = b if and only if it is

an extreme point of the set X(b) = {x : Ax = b, x > 0}.

Proof. Consider a BFS x and suppose that x = δy + (1 − δ)z for y, z ∈ X(b) and

δ ∈ (0, 1). Since y > 0 and z > 0, x = δy + (1 − δ)z implies that yi = zi whenever

xi = 0. By (iii), y and z are basic solutions with the same basis, i.e., both have exactly

m non-zero entries, which occur in the same rows. Moreover, Ay = b = Az and thus

A(y− z) = 0. This yields a linear combination of m columns of A that is equal to zero,

which by (ii) implies that y = z. Thus x is an extreme point of X(b).

Now consider a feasible solution x ∈ X(b) that is not a BFS. Let i1, . . . , ir be the

rows of x that are non-zero, and observe that r > m. This means that the columns

ai1, . . . , air, where ai = (a1i, . . . , ami)
T , have to be linearly dependent, i.e., there has to

exist a collection of r non-zero numbers yi1
, . . . , yir

such that yi1
ai1 + · · ·+ yir

air = 0.

Extending y to a vector in R
n by setting yi = 0 if i /∈ {i1, . . . , ir}, we have Ay =

yi1
ai1 + · · ·+ yir

air and thus A(x± ǫy) = b for every ǫ ∈ R. By choosing ǫ > 0 small

enough, x± ǫy > 0 and thus x± ǫy ∈ X(b). Moreover x = 1/2(x− ǫy) + 1/2(x+ ǫy),

so x is not an extreme point of X(b).

We are now ready to show that an optimum occurs at an extreme point of the

feasible set.

Theorem 5.3. If the linear program (5.2) is feasible and bounded, then it has an

optimal solution that is a basic feasible solution.

Proof. Let x be an optimal solution of (5.2). If x has exactly m non-zero entries, then

it is a BFS and we are done. So suppose that x has r non-zero entries for r > m, and

that it is not an extreme point of X(b), i.e., that x = δy + (1 − δ)z for y, z ∈ X(b)

with y 6= z and δ ∈ (0, 1). We will show that there must exist an optimal solution with

strictly fewer than r non-zero entries; the claim then follows by induction.

Since cTx > cTy and cTx > cTz by optimality of x, and since cTx = δcTy+(1−δ)cTz,

we must have that cTx = cTy = cTz, so y and z are optimal as well. As in the proof

of Theorem 5.2, xi = 0 implies that yi = zi = 0, so y and z have at most r non-zero

entries, which must occur in the same rows as in x. If y or z has strictly fewer than

r non-zero entries, we are done. Otherwise let x ′ = δ ′y + (1 − δ ′)z = z + δ ′(y − z),

and observe that x ′ is optimal for every δ ′ ∈ R. Moreover, y− z 6= 0, and all non-zero

entries of y − z occur in rows where x is non-zero as well. We can thus choose δ ′ ∈ R

such that x ′ > 0 and such that x ′ has strictly fewer than r non-zero entries.

The result can in fact be extended to show that the maximum of a convex function

f over a compact convex set X occurs at an extreme point of X. In this case any
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point x ∈ X can be written as a convex combination x =
∑

k

i=1
δix

i of extreme points

x1, . . . , xk ∈ X, where δ ∈ R
k

>0
and

∑
k

i=1
δi = 1. Convexity of f then implies that

f(x) 6

k∑

i=1

δif(x
i) 6 max

16i6k

f(xi).

5.3 A Naive Approach to Solving Linear Programs

Since there are only finitely many basic solutions, a naive approach to solving an LP

would be to go over all basic solutions and pick one that optimizes the objective. The

problem with this approach is that it would not in general be efficient, as the number

of basic solutions may grow exponentially in the number of variables. By contrast,

a large body of work on the theory of computational complexity typically associates

efficient computation with methods that for every problem instance can be executed

in a number of steps that is at most polynomial in the size of that instance.

In one of the following lectures we will study a well-known method for solving linear

programs, the so-called simplex method, which explores the set of basic solutions in

a more organized way. It is usually very efficient in practice, but may still require

an exponential number of steps for some contrived instances. In fact, no approach

is currently know that solves linear programs by inspecting only the boundary of the

feasible set and is efficient for every conceivable instance of the problem. There are,

however, so-called interior-point method that traverse the interior of the feasible set in

search of an optimal solution and are very efficient both in theory and in practice.


