
4 Conditions for Strong Duality

While we have already solved a few optimization problems using the method of La-

grange multipliers, it was not clear a priori whether each individual problem satisfied

strong duality and whether our attempt to solve it would ultimately be successful. Our

goal in this lecture will be to identify general conditions that guarantee strong duality,

and classes of problems that satisfy these conditions.

4.1 Supporting Hyperplanes and Convexity

To this end, we again consider the function φ that describes how the optimal value

behaves as we vary the right-hand side of the constraints. Fix a particular b ∈ R
m

and consider φ(c) as a function of c ∈ R
m. Further consider the hyperplane given by

α : Rm
→ R with

α(c) = β+ λT (c− b).

This hyperplane has intercept β at b and slope λ. We can now try to find φ(b) as

follows:

1. For each λ, find βλ = sup{β : β+ λT (c− b) 6 φ(c) for all c ∈ R
m}.

2. Choose λ to maximize βλ.

This approach is illustrated in Figure 4.1. We always have that βλ 6 φ(b). In the

situation on the left of Figure 4.1, this condition holds with equality because there is a

tangent to φ at b. In fact,

g(λ) = inf
x∈X

L(x, λ)

= inf
x∈X

(

f(x) − λT (h(x) − b)
)

= inf
c∈R

m
inf

x∈X(c)

(

f(x) − λT (h(x) − b)
)

= inf
c∈R

m

(

φ(c) − λT (c− b)
)

= sup
{

β : β+ λT (c− b) 6 φ(c) for all c ∈ R
m
}

= βλ

We again see the weak duality result as maxλ βλ 6 φ(b), but we also obtain a

condition for strong duality. Call α : Rm
→ R a supporting hyperplane to φ at b if

α(c) = φ(b) + λT (c− b) and φ(c) > φ(b) + λT (c− b) for all c ∈ R
m.

Theorem 4.1. Problem (1.1) satisfies strong duality if and only if there exists a

(non-vertical) supporting hyperplane to φ at b.
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Figure 4.1: Geometric interpretation of the dual with optimal value g(λ) = βλ. In the

situation on the left strong duality holds, and βλ = φ(b). In the situation on the right,

strong duality does not hold, and βλ < φ(b).

Proof. Suppose there exists a (non-vertical) supporting hyperplane to φ at b. This

means that there exists λ ∈ R
m such that for all c ∈ R

m,

φ(b) + λT (c− b) 6 φ(c).

This implies that

φ(b) 6 inf
c∈Rm

(

φ(c) − λT (c− b)
)

= inf
c∈Rm

inf
x∈X(c)

(

f(x) − λT (h(x) − b)
)

= inf
x∈X

L(x, λ)

= g(λ).

On the other hand, φ(b) > g(λ) by Theorem 3.2, so φ(b) = g(λ) and strong duality

holds.

Now suppose that the problem satisfies strong duality. Then there exists λ ∈ R
m

such that for all c ∈ R
m

φ(b) = g(λ) = inf
x∈X

L(x, λ)

6 inf
x∈X(c)

L(x, λ)

= inf
x∈X(c)

(f(x) − λT (h(x) − b))

= φ(c) − λT (c− b),

and thus

φ(b) + λT (c− b) 6 φ(c).

This describes a (non-vertical) supporting hyperplane to φ at b.

A sufficient condition for the existence of a supporting hyperplane is provided by

the following basic result, which we state without proof.
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Theorem 4.2 (Supporting Hyperplane Theorem). Suppose that φ : Rm
→ R is convex

and b ∈ R
m lies in the interior of the set of points where φ is finite. Then there

exists a (non-vertical) supporting hyperplane to φ at b.

4.2 A Sufficient Condition for Convexity

We now know that convexity of φ guarantees strong duality for every constraint vec-

tor b, but it is not clear how to recognize optimization problems that have this property.

The following result identifies a sufficient condition.

Theorem 4.3. Consider the problem to

minimize f(x)

subject to h(x) 6 b

x ∈ X,

and let φ be given by φ(b) = infx∈X(b) f(x). Then, φ is convex if X, f, and h are

convex.

Proof. Consider b1, b2 ∈ R
m such that φ(b1) and φ(b2) are defined, and let δ ∈ [0, 1]

and b = δb1 + (1 − δ)b2. Further consider x1 ∈ X(b1), x2 ∈ X(b2), and let x =

δx1 + (1− δ)x2. Then convexity of X implies that x ∈ X, and convexity of h that

h(x) = h(δx1 + (1− δ)x2)

6 δh(x1) + (1− δ)h(x2)

6 δb1 + (1− δ)b2

= b.

Thus x ∈ X(b), and by convexity of f,

φ(b) 6 f(x) = f(δx1 + (1− δ)x2) 6 δf(x1) + (1− δ)f(x2).

This holds for all x1 ∈ X(b1) and x2 ∈ X(b2), so taking infima on the right hand

side yields

φ(b) 6 δφ(b1) + (1− δ)φ(b2).

Note that an equality constraint h(x) = b is equivalent to the pair of constraints

h(x) 6 b and −h(x) 6 −b. In this case, the above result requires that X, f, h, and −h

are all convex, which in particular requires that h is linear. Indeed, in the case with

equality constraints, convexity of f and h does not suffice for convexity of φ. To see

this, consider the problem to

minimize f(x) = x2 subject to h(x) = x3 = b
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for some b > 0. Then φ(b) = b2/3, which is not convex. The Lagrangian is L(x, λ) =

x2 − λ(x3 − b) = (x2 − λx3) + λb, and has a finite minimum if and only if λ = 0. The

dual thus has an optimal value of 0, which is strictly smaller than φ(b) if b > 0.

Linear programs satisfy the conditions, both for equality and inequality constraints.

We thus have the following.

Theorem 4.4. If a linear program is feasible and bounded, it satisfies strong du-

ality.


