
3 Shadow Prices and Lagrangian Duality

3.1 Shadow Prices

A more intuitive understanding of Lagrange multipliers can be obtained by view-

ing (1.1) as a family of problems parameterized by b ∈ R
m, the right hand side of

the functional constraints. To this end, let φ(b) = inf{f(x) : h(x) = b, x ∈ R
n}. It

turns out that at the optimum, the Lagrange multipliers equal the partial derivatives

of φ with respect to its parameters.

Theorem 3.1. Suppose that f and h are continuously differentiable on R
n, and that

there exist unique functions x∗ : Rm → R
n and λ∗ : Rm → R

m such that for each

b ∈ R
m, h(x∗(b)) = b, λ∗(b) 6 0 and f(x∗(b)) = φ(b) = inf{f(x) − λ∗(b)T (h(x) − b) :

x ∈ R
n}. If x∗ and λ∗ are continuously differentiable, then

∂φ

∂bi

(b) = λ∗

i (b).

Proof. We have that

φ(b) = f(x∗(b)) − λ∗(b)T (h(x∗(b)) − b)

= f(x∗(b)) − λ∗(b)Th(x∗(b)) + λ∗(b)Tb.

Taking partial derivatives of each term,

∂f(x∗(b))

∂bi

=

n∑

j=1

∂f

∂xj
(x∗(b))

∂x∗j

∂bi

(b),

∂λ∗(b)Th(x∗(b))

∂bi

= λ∗(b)T
∂h(x∗(b))

∂bi

+ h(x∗(b))
∂λ∗(b)T

∂bi

=

(

n∑

j=1

(

λ∗(b)T
∂h

∂xj
(x∗(b))

)

∂x∗j

∂bi

(b)

)

+ h(x∗(b))
∂λ∗(b)T

∂bi

,

∂λ∗(b)Tb

∂bi

= λ∗(b)T
∂b

∂bi

+ b
λ∗(b)T

∂bi

.

By summing and re-arranging,

∂φ(b)

∂bi

=

n∑

j=1

(

∂f

∂xj
(x∗(b)) − λ∗(b)T

∂h

∂xj
(x∗(b))

)

∂x∗j

∂bi

(b)

− (h(x∗(b)) − b)
∂λ∗(b)T

∂bi

+ λ∗(b)T
∂b

∂bi

.
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The first term on the right-hand side is zero, because x∗(b) minimizes L(x, λ∗(b)) and

thus
∂L(x∗(b), λ∗(b))

∂xj
=

∂f

∂xj
(x∗(b)) −

(

λ∗(b)T
∂h

∂xj
(x∗(b))

)

= 0

for j = 1, . . . , n. The second term is zero as well, because x∗(b) is feasible and thus

(h(x∗(b)) − b)k = 0 for k = 1, . . . ,m, and the claim follows.

It should be noted that the result also holds when the functional constraints are

inequalities: if the ith constraint does not not hold with equality, then λ∗

i = 0 by

complementary slackness, and therefore also ∂λ∗i/∂bi = 0.

The Lagrange multipliers are also known as shadow prices, due to an economic

interpretation of the problem to

maximize f(x)

subject to h(x) 6 b

x ∈ X.

Consider a firm that produces n different goods from m different raw materials. Vector

b ∈ R
m describes the amount of each raw material available to the firm, vector x ∈ R

n

the quantity produced of each good. Functions h : Rn → R
m and f : Rn → R finally

describe the amounts of raw material required to produce, and the profit derived from

producing, particular quantities of the goods. The goal of the above problem thus is to

maximize the profit of the firm for given amounts of raw materials available to it. The

shadow price of raw material i then is the price the firm would be willing to pay per

additional unit of this raw material, which of course should be equal to the additional

profit derived from it, i.e., to ∂φ

∂bi
(b).

3.2 Lagrangian Duality

Another useful concept that arises from Lagrange multipliers is that of a dual problem.

Again consider the optimization problem (1.1) and the Lagrangian (2.1), and define

the (Lagrange) dual function g : Rm → R as the minimum value of the Lagrangian

over X, i.e.,

g(λ) = inf
x∈X

L(x, λ). (3.1)

As before, let Y be the set vectors of Lagrange multipliers for which the Lagrangian

has a finite minimum, i.e., Y = {λ ∈ R
m : infx∈X L(x, λ) > −∞}.

It is easy to see that the maximum value of the dual function provides a lower bound

on the minimum value of the original objective function. This property is known as

weak duality.

Theorem 3.2 (Weak duality). If x ∈ X(b) and λ ∈ Y, then g(λ) 6 f(x), and in

particular,

sup
λ∈Y

g(λ) 6 inf
x∈X(b)

f(x). (3.2)
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Proof. Let x ∈ X(b) and λ ∈ Y. Then,

g(λ) = inf
x ′∈X

L(x ′, λ)

6 L(x, λ)

= f(x) − λT (h(x) − b)

= f(x).

Equality on the first and third line holds by definition of g and L, the inequality on

the second line because x ∈ X. The last equality holds because x ∈ X(b) and therefore

h(x) − b = 0.

In light of this result, it is interesting to choose λ in order to make this lower bound

as large as possible, i.e., to

maximize g(λ)

subject to λ ∈ Y.

This problem is known as the dual problem, and (1.1) is in this context referred to

as the primal problem. If (3.2) holds with equality, i.e., if there exists λ ∈ Y such

that g(λ) = infx∈X(b) f(x), the problem is said to satisfy strong duality. The cases

where strong duality holds are those that can be solved using the method of Lagrange

multipliers.

Example 3.3. Again consider the minimization problem of Example 2.2, and recall

that Y = {λ ∈ R
2 : λ1 = −2, λ2 < 0} and that for each λ ∈ Y the minimum occurred at

x∗(λ) = (3/(2λ2), 1/(2λ2), x3). Thus,

g(λ) = inf
x∈X

L(x, λ) = L(x∗(λ), λ) =
10

4λ2

+ 4λ2 − 10,

so the dual problem is to

maximize
10

4λ2

+ 4λ2 − 10 subject to λ2 < 0.

It should not come as a surprise that the maximum is attained for λ2 = −
√

5/8, and

that the primal and dual have the same optimal value, namely −2(
√
10+ 5). Note that

it is not actually necessary to solve the dual to see that λ2 = −
√

5/8 is an optimizer, it

suffices that the value of the dual function at this point equals the value of the objective

function of the primal at some point in the feasible set of the primal.

There are several reasons why the dual is interesting. Any feasible solution of the

dual provides a succinct certificate that the optimal solution of the primal is bounded

by a certain value. In particular, a pair of solutions of the primal and dual that yield

the same value must be optimal. If strong duality holds, the optimal value of the primal

can be determined by solving the dual, which in some cases may be easier than solving

the primal. In a later lecture we will express two quantities as the optimal solutions of

a pair of a primal and a dual that satisfy strong duality, thereby showing that the two

quantities are equal.


