
2 The Method of Lagrange Multipliers

A well-known method for solving constrained optimization problems is the method

of Lagrange multipliers. The idea behind this method is to reduce constrained opti-

mization to unconstrained optimization, and to take the (functional) constraints into

account by augmenting the objective function with a weighted sum of them. To this

end, define the Lagrangian associated with (1.1) as

L(x, λ) = f(x) − λT (h(x) − b), (2.1)

where λ ∈ R
m is a vector of Lagrange multipliers.

2.1 Lagrangian Sufficiency

The following result provides a condition under which minimizing the Lagrangian,

subject only to the regional constraints, yields a solution to the original constrained

problem. The result is easy to prove, yet extremely useful in practice.

Theorem 2.1 (Lagrangian Sufficiency Theorem). Let x ∈ X and λ ∈ R
m such that

L(x, λ) = infx ′∈X L(x ′, λ) and h(x) = b. Then x is an optimal solution of (1.1).

Proof. We have that

min
x ′

∈X(b)
f(x ′) = min

x ′
∈X(b)

[f(x ′) − λT (h(x ′) − b)]

> min
x ′∈X

[f(x ′) − λT (h(x ′) − b)]

= f(x) − λT (h(x) − b) = f(x).

Equality in the first line holds because h(x ′) − b = 0 when x ′ ∈ X(b). The inequality

on the second line holds because the minimum is taken over a larger set. In the third

line we finally use that x minimizes L and that h(x) = b.

Two remarks are in order. First, a vector λ of Lagrange multipliers satisfying the

conditions of the theorem is not guaranteed to exist in general, but it does exist for a

large class of problems. Second, the theorem appears to be useful mainly for showing

that a given solution x is optimal. In certain cases, however, it can also be used to find

an optimal solution. Our general strategy in these cases will be to minimize L(x, λ) for

all values of λ, in order to obtain a minimizer x∗(λ) that depends on λ, and then find

λ∗ such that x∗(λ∗) satisfies the constraints.
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2.2 Using Lagrangian Sufficiency

We begin by applying Theorem 2.1 to a concrete example.

Example 2.2. Assume that we want to

minimize x1 − x2 − 2x3

subject to x1 + x2 + x3 = 5

x21 + x22 = 4.

The Lagrangian of this problem is

L(x, λ) = x1 − x2 − 2x3 − λ1(x1 + x2 + x3 − 5) − λ2(x
2
1 + x22 − 4)

=
(

(1− λ1)x1 − λ2x
2
1

)

+
(

(−1− λ1)x2 − λ2x
2
2

)

+
(

(−2− λ1)x3

)

+ 5λ1 + 4λ2.

For a given value of λ, we can minimize L(x, λ) by independently minimizing the

terms in x1, x2, and x3, and we will only be interested in values of λ for which the

minimum is finite.

The term (−2 − λ1)x3 does not have a finite minimum unless λ1 = −2. The terms

in x1 and x2 then have a finite minimum only if λ2 < 0, in which case an optimum

occurs when

∂L

∂x1
= 1− λ1 − 2λ2x1 = 3− 2λ2x1 = 0 and

∂L

∂x2
= −1− λ1 − 2λ2x2 = 1− 2λ2x2 = 0,

i.e., when x1 = 3/(2λ2) and x2 = 1/(2λ2). The optimum is indeed a minimum, because

HL =





∂2L
∂x1∂x1

∂2L
∂x1∂x2

∂2L
∂x2∂x1

∂2L
∂x2∂x2



 =





−2λ2 0

0 −2λ2



 ,

is positive semidefinite when λ2 < 0.

Let Y be the set of values of λ such that L(x, λ) has a finite minimum, i.e.,

Y = {λ ∈ R
2 : λ1 = −2, λ2 < 0}.

For every λ ∈ Y, the unique optimum of L(x, λ) occurs at x∗(λ) = (3/(2λ2), 1/(2λ2), x3)
T ,

and we need to find λ ∈ Y such that x∗(λ) is feasible to be able to apply Theorem 2.1.

Therefore,

x21 + x22 =
9

4λ2
2

+
1

4λ2
2

= 4

and thus λ2 = −
√

5/8. We can now use Theorem 2.1 to conclude that the minimization

problem has an optimal solution at x1 = −3
√

2/5, x2 = −
√

2/5, and x3 = 5−x1−x2 =

5+ 4
√

2/5.
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Let us formalize the strategy we have used to find x and λ satisfying the conditions

of Theorem 2.1 for a more general problem. To

minimize f(x) subject to h(x) 6 b, x ∈ X (2.2)

we proceed as follows:

1. Introduce a vector z of slack variables to obtain the equivalent problem

minimize f(x) subject to h(x) + z = b, x ∈ X, z > 0.

2. Compute the Lagrangian L(x, z, λ) = f(x) − λT (h(x) + z− b).

3. Define the set

Y = {λ ∈ R
m : infx∈X,z>0 L(x, z, λ) > −∞}.

4. For each λ ∈ Y, minimize L(x, z, λ) subject only to the regional constraints, i.e.,

find x∗(λ), z∗(λ) satisfying

L(x∗(λ), z∗(λ), λ) = infx∈X,z>0 L(x, z, λ). (2.3)

5. Find λ∗ ∈ Y such that (x∗(λ∗), z∗(λ∗)) is feasible, i.e., such that x∗(λ∗) ∈ X,

z∗(λ∗) > 0, and h(x∗(λ∗)) + z∗(λ∗) = b. By Theorem 2.1, x∗(λ∗) is optimal

for (2.2).

2.3 Complementary Slackness

It is worth pointing out a property known as complementary slackness, which follows

directly from (2.3): for every λ ∈ Y and i = 1, . . . ,m,

(z∗(λ))i 6= 0 implies λi = 0 and

λi 6= 0 implies (z∗(λ))i = 0.

Indeed, if the conditions were violated for some i, then the value of the Lagrangian

could be reduced by reducing (z∗(λ))i, while maintaining that (z∗(λ))i > 0. This

would contradict (2.3). Further note that λ ∈ Y requires for each i = 1, . . . ,m either

that λi 6 0 or that λi > 0, depending on the sign of bi. In the case where where λi 6 0,

we for example get that

(h(x∗(λ∗)))i < bi implies λ∗

i = 0 and

λ∗

i < 0 implies (h(x∗(λ∗)))i = bi.

Slack in the corresponding inequalities (h(x∗(λ∗)))i 6 bi and λ∗

i 6 0 has to be comple-

mentary, in the sense that it cannot occur simultaneously in both of them.
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Example 2.3. Consider the problem to

minimize x1 − 3x2

subject to x21 + x22 6 4

x1 + x2 6 2.

By adding slack variables, we obtain the following equivalent problem:

minimize x1 − 3x2

subject to x21 + x22 + z1 = 4

x1 + x2 + z2 = 2

z1 > 0, z2 > 0.

The Lagrangian of this problem is

L(x, z, λ) = x1 − 3x2 − λ1(x
2
1 + x22 + z1 − 4) − λ2(x1 + x2 + z2 − 2)

=
(

(1− λ2)x1 − λ1x
2
1

)

+
(

(−3− λ2)x2 − λ1x
2
2

)

− λ1z1 − λ2z2 + 4λ1 + 2λ2.

Since z1 > 0 and z2 > 0, the terms −λ1z1 and −λ2z2 have a finite minimum only if

λ1 6 0 and λ2 6 0. In addition, the complementary slackness conditions λ1z1 = 0 and

λ2z2 = 0 must hold at the optimum.

Minimizing L(x, z, λ) in x1 and x2 yields

∂L

∂x1
= 1− λ2 − 2λ1x1 = 0 and

∂L

∂x2
= −3− λ2 − 2λ1x2 = 0,

and we indeed obtain a minimum, because

HL =





∂2L
∂x1∂x1

∂2L
∂x1∂x2

∂2L
∂x2∂x1

∂2L
∂x2∂x2



 =





−2λ1 0

0 −2λ1





is positive semidefinite when λ1 6 0.

Setting λ1 = 0 leads to inconsistent values for λ2, so we must have λ1 < 0, and,

by complementary slackness, z1 = 0. Also by complementary slackness, there are now

two more cases to consider: the one where λ2 < 0 and z2 = 0, and the one where

λ2 = 0. The former case leads to a contradiction, the latter to the unique minimum at

x1 = −
√

2/5 and x2 = 3
√

2/5.


