
12 The Maximum Flow Problem

Consider a flow network (V, E) with a single source 1, a single sink n, and finite capac-

ities mij = Cij for all (i, j) ∈ E. We will also assume for convenience that mij = 0 for

all (i, j) ∈ E. The maximum flow problem then asks for the maximum amount of flow

that can be sent from vertex 1 to vertex n, i.e., the goal is to

maximize δ

subject to
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =















δ if i = 1

−δ if i = n

0 otherwise

0 6 xij 6 Cij for all (i, j) ∈ E.

(12.1)

This problem is in fact a special case of the minimum-cost flow problem. To see

this, set cij = 0 for all (i, j) ∈ E, and add an edge (n, 1) with infinite capacity and

cost cn1 = −1. Since the new edge (n, 1) has infinite capacity, any feasible flow of

the original network is also feasible for the new network. Cost is clearly minimized by

maximizing the flow across the edge (n, 1), which by the flow conservation constraints

for vertices 1 and n maximizes flow through the original network.

12.1 The Max-Flow Min-Cut Theorem

Consider a flow network G = (V, E) with capacities Cij for (i, j) ∈ E. A cut of G is a

partition of V into two sets, and the capacity of a cut is defined as the sum of capacities

of all edges across the partition. Formally, for S ⊆ V, the capacity of the cut (S, V \ S)

is given by

C(S) =
∑

(i,j)∈S×(V\S)

Cij.

Assume that x is a feasible flow vector that sends δ units of flow from vertex 1 to

vertex n. It is easy to see that δ is bounded from above by the capacity of any cut S

with 1 ∈ S and n ∈ V \ S. Indeed, for X, Y ⊆ V, let

fx(X, Y) =
∑

(i,j)∈E∩(X×Y)

xij.
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Then, for any S ⊆ V with 1 ∈ S and n ∈ V \ S,

δ =
∑

i∈S





∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji





= fx(S, V) − fx(V, S)

= fx(S, S) + fx(S, V \ S) − fx(V \ S, S) − fx(S, S)

= fx(S, V \ S) − fx(V \ S, S)

6 fx(S, V \ S) 6 C(S).

(12.2)

The following result states that this upper bound in fact tight, i.e., that there exists

a flow of size equal to the minimum capacity of a cut that separates vertex 1 from

vertex n.

Theorem 12.1 (Max-flow min-cut theorem). Let δ be the optimal solution of (12.1)

for a network (V, E) with capacities Cij for all (i, j) ∈ E. Then,

δ = min {C(S) : S ⊆ V, 1 ∈ S, n ∈ V \ S } .

Proof. It remains to be shown that there exists a cut that separates vertex 1 from vertex

n and has capacity equal to δ. Consider a feasible flow vector x. A path v0, v1, . . . , vk is

called an augmenting path for x if xvi−1vi
< Cvi−1vi

or xvivi−1
> 0 for every i = 1, . . . , k.

If there exists an augmenting path from vertex 1 to vertex n, then we can push flow

along the path, by increasing the flow on every forward edge and decreasing the flow

on every backward edge along the path by the same amount, such that all constraints

remain satisfied and the amount of flow from 1 to n increases.

Now assume that x is optimal, and let

S = {1} ∪ { i ∈ V : there exists an augmenting path for x from 1 to i }.

By optimality of x, n ∈ V \ S. Moreover,

δ = fx(S, V \ S) − fx(V \ S, S) = fx(S, V \ S) = C(S).

The first equality holds by (12.2). The second equality holds because xij = 0 for

every (i, j) ∈ E ∩ ((V \ S) × S). The third equality holds because xij = Cij for every

(i, j) ∈ E ∩ (S× (V \ S)).

12.2 The Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm attempts to find a maximum flow by repeatedly push-

ing flow along an augmenting path, until such a path can no longer be found:

1. Start with a feasible flow vector x.

2. If there is no augmenting path for x from 1 to n, stop.
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Figure 12.1: An instance of the maximum flow problem

3. Otherwise pick some augmenting path from 1 to n, and push a maximum amount

of flow along this path without violating any constraints. Then go to Step 2.

Consider for example the flow network in Figure 12.1. Pushing one unit of flow along

the path s, a, b, t, four units along the path s, a, d, t, and one more unit along the path

s, c, d, t yields a maximum flow, and the fact that this flow is optimal is witnessed by

the cut ({s, a, b, c, d}, {t}), which has capacity 6.

If all capacities are integral and if we start from an integral flow vector, e.g., the

flow vector x such that xij = 0 for all (i, j) ∈ E, then the Ford-Fulkerson algorithm

maintains integrality and increases the overall amount of flow by at least one unit in

each iteration. The algorithm is therefore guaranteed to find a maximum flow after

a finite number of iterations. Clearly, the latter also holds when all capacities are

rational.

12.3 The Bipartite Matching Problem

A matching of a graph (V, E) is a set of edges that do not share any vertices, i.e., a set

M ⊆ E such for all (s, t), (u, v) ∈ M, s 6= u and s 6= v. Matching M is called perfect

if it covers every vertex, i.e., if |M| = |V |/2. A graph is k-regular if every vertex has

degree k. Using flows it is easy to show that every k-regular bipartite graph, for k > 1,

has a perfect matching. For this, consider a k-regular bipartite graph (L⊎ R, E), orient

all edges from L to R, and add two new vertices s and t and new edges (s, i) and (j, t)

for every i ∈ L and j ∈ R. Finally set the capacity of every new edge to 1, and that of

every original edge to infinity. We can now send |L| units of flow from s to t by setting

the flow to 1 for every new edge and to 1/k for every original edge. The Ford-Fulkerson

algorithm is therefore guaranteed to find an integral solution with at least the same

value, and it is easy to see that such a solution corresponds to a perfect matching.

This result is a special case of a well-known characterization of the bipartite graphs

that have a perfect matching. It should not come as a surprise that this characterization

can be obtained from the max-flow min-cut theorem as well.

Theorem 12.2 (Hall’s Theorem). A bipartite graph G = (L ⊎ R, E) with |L| = |R| has

a perfect matching if and only if |N(X)| > |X| for every X ⊆ L, where N(X) = {j ∈

R : i ∈ X, (i, j) ∈ E}.


