
11 The Transportation Algorithm

The particular structure of basic feasible solutions in the case of the transportation

problem gives rise to a special interpretation of the simplex method. This special form

is sometimes called the transportation algorithm.

11.1 Optimality Conditions

The Lagrangian of the transportation problem can be written as

L(x, λ, µ) =

n∑

i=1

m∑

j=1

cijxij +

n∑

i=1

λi

(

si −

m∑

j=1

xij

)

−

m∑

j=1

µj

(

dj −

n∑

i=1

xij

)

=

n∑

i=1

m∑

j=1

(cij − λi + µj)xij +

n∑

i=1

λisi −

m∑

j=1

µjdj,

where λ ∈ R
n and µ ∈ R

m are Lagrange multipliers for the suppliers and consumers,

respectively. Subject to xij > 0, the Lagrangian has a finite minimum if and only if

cij − λi + µj > 0 for i = 1, . . . , n and j = 1, . . . ,m,

and at the optimum,

(cij − λi + µj)xij = 0 for i = 1, . . . , n and j = 1, . . . ,m.

Together with feasibility of x, these dual feasibility and complementary slackness con-

ditions are necessary and sufficient for optimality of x.

Note that the sign of the Lagrange multipliers can be chosen arbitrarily, and that

this choice determines the form of the optimality conditions. The above choice is

consistent with viewing demands as negative supplies.

11.2 The Simplex Method for the Transportation Problem

In solving instances of the transportation problem with the simplex method, a tableau

of the following form will be useful:

µ1 · · · µm

λ1 x11 · · · x1m s1
c11 · · · c1m

...
...

. . .
...

......
. . .

...

λn xn1 · · · xnm sn
cn1 · · · cnm

d1 · · · dm
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Figure 11.1: Initial basic feasible solution of an instance of the transportation problem

(left) and a cycle along which the overall cost can be decreased (right)

Consider for example the Hitchcock transportation problem with three suppliers

and four consumers given by the following tableau:

8
5 3 4 6

10
2 7 4 1

9
5 6 2 4

6 5 8 8

Finding an initial BFS

An initial BFS can be found by iteratively considering pairs (i, j) of supplier i and

consumer j, increasing xij until either the supply si or the demand dj is satisfied, and

moving to the next supplier in the former case or to the next consumer in the latter.

Since
∑

i si =
∑

j dj, this process is guaranteed to find a feasible solution. If at some

intermediate step both supply and demand are satisfied at the same time, the resulting

solution is degenerate. In general, degeneracies occur when a subset of the consumers

can be satisfied exactly by a subset of the suppliers. In the example, we can start by

setting x11 = min{s1, d1} = 6, moving to consumer 2 and setting x12 = 2, moving to

supplier 2 and setting x22 = 3, and so forth. The resulting flows are shown on the left

of Figure 11.1.

Note that the initial BFS can be associated with a spanning tree (V, T) of the flow

network where T is the set of edges visited by the above procedure. It then holds that

xij = 0 when (i, j) /∈ T , and complementary slackness dictates that λi − µj = cij when

(i, j) ∈ T . By setting λ1 = 0, we obtain a system of n + m − 1 linear equalities with

n + m − 1 variables: each equality corresponds to an edge in T , each variable to a

vertex in (S \ {1}) ⊎ C. This system of equalities has a unique solution, allowing us to

compute the values of the dual variables. We will see momentarily that every BFS can

be associated with a spanning tree in this way. To verify dual feasibility, it will finally
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be convenient to write down λi − µj for (i, j) /∈ T , and we do so in the upper right

corner of the respective cells. For our example, we obtain the following tableau:

−5 −3 0 −2

0 6 2
0 2

8
5 3 4 6

4
9

3 7
6

10
2 7 4 1

2
7 5

1 8 9
5 6 2 4

6 5 8 8

Pivoting

If cij > λi −µj for all (i, j) /∈ T , the current flow is optimal. Assume on the other hand

that dual feasibility is violated for some edge (i, j) /∈ T , and observe that this edge and

the edges in T together form a unique cycle. In the absence of degeneracies the regional

constraints for edges in T are not tight, so we can push flow around this cycle in order

to increase xij and decrease the value of the Lagrangian. Due to the special structure

of the network, this will alternately increase and decrease the flow for edges along the

cycle until xi ′j ′ becomes zero for some (i ′, j ′) ∈ T . We thus obtain a new BFS, and a

new spanning tree in which (i ′, j ′) has been replaced by (i, j).

In our example dual feasibility is violated, for example, for i = 2 and j = 1. Edge

(2, 1) forms a unique cycle with the spanning tree T , and we would like to increase x21
by pushing flow along this cycle. In particular, increasing x21 by θ will increase x12
and decrease x11 and x22 by the same amount. The situation is shown on the right of

Figure 11.1. If we increase x21 by the maximum amount of θ = 3 and re-compute the

values of the dual variables λ and µ, we obtain the following tableau:

−5 −3 −7 −9

0 3 5
7 9

5 3 4 6

−3 3
0

7
6

2 7 4 1

−5
0 −2

1 8
5 6 2 4

Now, c24 < λ2 − µ4, and we can increase x24 by 7 to obtain the following tableau,

which satisfies cij > λi − µj for all (i, j) /∈ T and therefore yields an optimal solution:

−5 −3 −2 −4

0 3 5
2 4

5 3 4 6

−3 3
0 −1

7
2 7 4 1

0
5 3

8 1
5 6 2 4
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Let us summarize what we have done:

1. Find an initial BFS, and let T be the edges of the corresponding spanning tree.

2. Choose λ and µ such that λ1 = 0 and cij − λi + µj = 0 for all (i, j) ∈ T .

3. If cij − λi + µj > 0 for all (i, j) ∈ E, the solution is optimal; stop.

4. Otherwise pick (i, j) ∈ E such that cij − λi + µj < 0, and push flow along the

unique cycle in (V, T ∪ {(i, j)}) until xi ′j ′ = 0 for some edge (i ′, j ′) in the cycle.

Set T to (T \ {(i ′, j ′)}) ∪ {(i, j)} and go to Step 2.


