
10 The Minimum-Cost Flow Problem

The remaining lectures will be concerned with optimization problems on networks, in

particular with flow problems.

10.1 Networks

A directed graph, or network, G = (V, E) consists of a set V of vertices and a set

E ⊆ V × V of edges. When the relation E is symmetric, G is called an undirected

graph, and we can write edges as unordered pairs {u, v} ∈ E for u, v ∈ V. The degree

of vertex u ∈ V in graph G is the number |{v ∈ V : (u, v) ∈ E or (v, u) ∈ E}| of other

vertices connected to it by an edge. A walk from u ∈ V to w ∈ V is a sequence of

vertices v1, . . . , vk ∈ V such that v1 = u, vk = w, and (vi, vi+1) ∈ E for i = 1, . . . , k−1.

In a directed graph, we can also consider an undirected walk where (vi, vi+1) ∈ E or

(vi+1, vi) ∈ E for i = 1, . . . , k − 1. A walk is a path if v1, . . . , vk are pairwise distinct,

and a cycle if v1, . . . , vk−1 are pairwise distinct and vk = v1. A graph that does not

contain any cycles is called acyclic. A graph is called connected if for every pair of

vertices u, v ∈ V there is an undirected path from u to v. A tree is a graph that is

connected and acyclic. A graph G ′ = (V ′, E ′) is a subgraph of graph G = (V, E) if

V ′ ⊆ V and E ′ ⊆ E. In the special case where G ′ is a tree and V ′ = V, it is called a

spanning tree of G.

10.2 Minimum-Cost Flows

Consider a network G = (V, E) with |V | = n, and let b ∈ R
n. Here, bi denotes the

amount of flow that enters or leaves the network at vertex i ∈ V. If bi > 0, we say

that i is a source supplying bi units of flow. If bi < 0, we say that i is a sink with a

demand of |bi| units of flow. Further let C,M,M ∈ R
n×n, where cij denotes the cost

associated with one unit of flow on edge (i, j) ∈ E, and mij and mij respectively denote

lower and upper bounds on the flow across this edge. The minimum-cost flow problem

then asks for flows xij that conserve the flow at each vertex, respect the upper and

lower bounds, and minimize the overall cost. Formally, x ∈ R
n×n is a minimum-cost

flow of G if it is an optimal solution of the following optimization problem:

minimize
∑

(i,j)∈E

cijxij

subject to bi +
∑

j:(j,i)∈E

xji =
∑

j:(i,j)∈E

xij for all i ∈ V,

mij 6 xij 6 mij for all (i, j) ∈ E.
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The minimum-cost flow problem is a linear programming problem, with constraints of

the form Ax = b where

aik =






1 kth edge starts at vertex i,

−1 kth edge ends at vertex i,

0 otherwise.

Note that
∑

i∈V bi = 0 is required for feasibility, and that a problem satisfying this

condition can be transformed into an equivalent problem where bi = 0 for all i by

introducing an additional vertex, and new edges from each sink to the new vertex and

from the new vertex to each of the sources with upper and lower bounds equal to the

flow that should enter the sources and leave the sinks. The latter problem is known

as a circulation problem, because flow does not enter or leave the network but merely

circulates. We can further assume without loss of generality that the network G is

connected. Otherwise the problem can be decomposed into several smaller problems

that can be solved independently.

An important special case is that of uncapacitated flow problems, where mij = 0

and mij = ∞ for all (i, j) ∈ E. Clearly, an uncapacitated flow problem is either

unbounded, or has an equivalent problem with finite capacities.

10.3 Sufficient Conditions for Optimality

The Lagrangian of the minimum-cost circulation problem is

L(x, λ) =
∑

(i,j)∈E

cijxij −
∑

i∈V

λi





∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji



 =
∑

(i,j)∈E

(cij − λi + λj)xij.

If the Lagrangian is minimized subject to the regional constraints mij 6 xij 6 mij for

(i, j) ∈ E, Theorem 2.1 yields a set of conditions that are sufficient for optimality. It

will be instructive to prove this result directly.

Theorem 10.1. Consider a feasible flow x ∈ R
n×n for a circulation problem, and

let λ ∈ R
n such that

cij − λi + λj > 0 implies xij = mij,

cij − λi + λj < 0 implies xij = mij, and

mij < xij < mij implies cij − λi + λj = 0.

Then x is optimal.
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Proof. For (i, j) ∈ E, let c̄ij = cij − λi + λj. Then, for every feasible flow x ′,

∑

(i,j)∈E

cijx
′

ij =
∑

(i,j)∈E

cijx
′

ij −
∑

i∈V

λi





∑

j:(i,j)∈E

x ′

ij −
∑

j:(j,i)∈E

x ′

ji





=
∑

(i,j)∈E

c̄ijx
′

ij

>
∑

(i,j)∈E
c̄ij<0

c̄ijmij +
∑

(i,j)∈E
c̄ij>0

c̄ijmij

=
∑

(i,j)∈E

c̄ijxij =
∑

(i,j)∈E

cijxij

The Lagrange multiplier λi is also referred to as a node number, or as a potential

associated with vertex i ∈ V. Since only the difference between pairs of Lagrange

multipliers appears in the optimality conditions, we can set λ1 = 0 without loss of

generality.

10.4 The Transportation Problem

An important special case of the minimum-cost flow problem is the transportation

problem, where we are given a set of suppliers i = 1, . . . , n producing si units of a good

and a set of consumers j = 1, . . . ,m with demands dj such that
∑n

i=1 si =
∑m

j=1 dj.

The cost of transporting one unit of the good from supplier i to consumer j is cij,

and the goal is to match supply and demand while minimizing overall transportation

cost. This can be formulated as an uncapacitated minimum-cost flow problem on a

bipartite network, i.e., a network G = (S ⊎ C, E) with S = {1, . . . , n}, C = {1, . . . ,m},

and E ⊆ S×C. As far as optimal solutions are concerned, edges not contained in E are

equivalent to edges with a very large cost. We can thus restrict our attention to the

case where E = S× C, known as the Hitchcock transportation problem :

minimize

n∑

i=1

m∑

j=1

cijxij

subject to

m∑

j=1

xij = si for i = 1, . . . , n

n∑

i=1

xij = dj for j = 1, . . . ,m

x > 0.

It turns out that the transportation problem already captures the full expressiveness

of the minimum-cost flow problem.
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i, jmij

i
∑

k:(i,k)∈Emik − bi

j
∑

k:(j,k)∈Emjk − bj

0

cij

Figure 10.1: Representation of flow conservation constraints by an instance of the

transportation problem

Theorem 10.2. Every minimum-cost flow problem with finite capacities or non-

negative costs has an equivalent transportation problem.

Proof. Consider a minimum-cost flow problem for a network (V, E) and assume without

loss of generality that mij = 0 for all (i, j) ∈ E. If this is not the case, we can instead

consider the problem obtained by setting mij to zero, mij to mij −mij, and replacing

bi by bi − mij and bj by bj + mij. A solution with flow xij for the new problem

then corresponds to a solution with flow xij + mij for the original problem. We can

further assume that all capacities are finite: if some edge has infinite capacity but costs

are non-negative then setting the capacity of this edge to a large enough number, for

example
∑

i∈V |bi|, does not affect the optimal solution of the problem.

We now construct an instance of the transportation problem as follows. For every

vertex i ∈ V, we add a consumer with demand
∑

k mik − bi. For every edge (i, j) ∈ E,

we add a supplier with supply mij, an edge to vertex i with cost cij,j = 0, and an edge

to vertex j with cost cij,j = cij. The situation is shown in Figure 10.1.

We now claim that there exists a direct correspondence between feasible flows of the

two problems, and that these flows have the same costs. To see this, let the flows on

edges (ij, i) and (ij, j) be mij−xij and xij, respectively. The total flow into vertex i then

is
∑

k:(i,k)∈E(mik − xik) +
∑

k:(k,i)∈E xki , which must be equal to
∑

k:(i,k)∈Emik − bi.

This is the case if and only if bi +
∑

k:(k,i)∈E xki −
∑

k:(i,k)∈E xik = 0, which is the flow

conservation constraint for vertex i in the original problem.


