
1 Introduction and Preliminaries

1.1 Constrained Optimization

We consider constrained optimization problems of the form

minimize f(x)

subject to h(x) = b

x ∈ X.

Such a problem is given by a vector x ∈ R
n of decision variables, an objective function

f : Rn → R, a functional constraint h(x) = b where h : Rn → R
m and b ∈ R

m, and

a regional constraint x ∈ X where X ⊆ R
n. The set X(b) = { x ∈ X : h(x) = b } is

called the feasible set, and a problem is called feasible if X(b) is non-empty. A vector

x∗ is called optimal if it is in the feasible set and minimizes f among all vectors in

the feasible set. The assumption that the functional constraint holds with equality is

without loss of generality: an inequality constraint like g(x) 6 b can be re-written as

g(x) + z = b, where z is a new slack variable with the additional regional constraint

z > 0. Since minimization of f(x) and maximization of −f(x) are equivalent, we will

often concentrate on one of the two.

1.2 Linear Programs

The special case where the objective function and constraints are linear is called a linear

program (LP). In matrix-vector notation we can write an LP as

minimize cTx

subject to aT
i x > bi, i ∈ M1

aT
i x 6 bi, i ∈ M2

aT
i x = bi, i ∈ M3

xj > 0, j ∈ N1

xj 6 0, j ∈ N2

where c ∈ R
n is a cost vector, x ∈ R

n is a vector of decision variables, and constraints

are given by ai ∈ R
n and bi ∈ R for i ∈ {1, . . . ,m}. Index sets M1,M2,M3 ⊆ {1, . . . ,m}

and N1, N2 ⊆ {1, . . . , n} are used to distinguish between different types of contraints.

An equality constraint aT
i x = bi is equivalent to the pair of constraints aT

i 6 bi and

aT
i x > bi, and a constraint of the form aT

i x 6 bi can be rewritten as (−ai)
Tx > −bi.

Each occurrence of an unconstrained variable xj can be replaced by x+j + x−j , where x+j
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Figure 1.1: Geometric interpretation of the linear program in Example 1.1

and x−j are two new variables with x+j > 0 and x−j 6 0. We can thus write every linear

program in the general form

min { cTx : Ax > b, x > 0 } (1.1)

where x, c ∈ R
n, b ∈ R

m, and A ∈ R
m×n. Observe that constraints of the form xj > 0

and xj > 0 are just special cases of constraints of the form aT
i x > bi, but we often

choose to make them explicit.

A linear program of the form

min { cTx : Ax = b, x > 0 } (1.2)

is said to be in standard form. The standard form is of course a special case of the

general form. On the other hand, we can also bring every general form problem into the

standard form by replacing each inequality constraint of the form aT
i x 6 bi or aT

i x > bi

by a constraint aT
i x + si = bi or aT

i x − si = bi, where si is a new slack variable, and

an additional constraint si > 0.

The general form is typically used to discuss the theory of linear programming,

while the standard form is often more convenient when designing algorithms.

Example 1.1. Consider the linear following program, which is illustrated in Figure 1.1:

minimize −(x1 + x2)

subject to x1 + 2x2 6 6

x1 − x2 6 3

x1, x2 > 0
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Figure 1.2: A convex set S and a non-convex set T

x

f(x)

x

g(x)

Figure 1.3: A convex function f and a concave function g

Solid lines indicate sets of points for which one of the constraints is satisfied with

equality. The feasible set is shaded. Dashed lines, orthogonal to the cost vector c,

indicate sets of points for which the value of the objective function is constant.

1.3 Review: Unconstrained Optimization and Convexity

Consider a function f : Rn → R, and let x ∈ R
n. A necessary condition for x to

minimize f over R
n is that ∇f(x) = 0, where

∇f =

(

∂f

∂x1
, . . . ,

∂f

∂xn

)T

is the gradient of f. A general function f may have many local minima on the feasible

set X, which makes it difficult to find a global minimum. However, if X is convex, and

f is convex on X, then any local minimum of f on X is also a global minimum on X.

Let S ⊆ R
n. S is called a convex set if for all δ ∈ [0, 1], x, y ∈ S implies that

δx+ (1− δ)y ∈ S. An illustration in show in Figure 1.2. A function f : S → R is called

convex function if the set of points above its graph is convex, i.e., if for all x, y ∈ S

and δ ∈ [0, 1], δf(x) + (1 − δ)f(y) > f(δx + (1 − δ)y). Function f is concave if −f is

convex. An illustration is shown in Figure 1.3.

If f is twice differentiable, it is convex on a convex set S if its Hessian

Hf =

(

∂2f

∂xi∂xj

)

ij

is positive semidefinite on S. A symmetric n×n matrix A is called positive semidefinite

if vTAv > 0 for all v ∈ R
n, or equivalently, if all eigenvalues of A are non-negative.
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Theorem 1.2. Let X ⊆ R
n be convex, f : Rn → R twice differentiable on X. Let

∇f(x∗) = 0 for x∗ ∈ X and Hf(x) positive semidefinite for all x ∈ X. Then x∗

minimizes f(x) subject to x ∈ X.

It is easy to see that in the case of LPs, the feasible set is convex and the objective

function is both convex and concave. But even when these two conditions are satisfied,

the above theorem cannot generally be used to solve constrained optimization problems,

because the gradient might not be zero anywhere on the feasible set.


